

The Predictive Power of Shortest-Path Weight Inference

ANDREVI COYLE, MIRO KRAETZL, OLAF MAENNEL, MATTHEVI ROUGHAN

<matthew.roughan@adelaide.edu.au>

Discipline of Applied Mathematics School of Mathematical Sciences University of Adelaide

Let's go a reverse engineering, hey!

- do a bunch of traceroutes from as many places, to as many places as possible
- compile them together
- infer
 - topology
 - routing
 - of a single AS (at a time)
- invaluable
 - scientific interest
 - for simulations

Network Tomography

Network Tomography can be generally applied to mean solving inverse problems in communications networks.

- link performance (from end-to-end measurements)
- end-to-end traffic matrices (from link loads)
- topology
- routing

Routing Policy Inference

- current routing is implicit in traceroute measurements
- but of limited utility
- doesn't tell you what will happen if something changes
 - thats where the money is
 - also useful for understanding the mind of the "network engineer"
- really need to infer routing policies
 - simplest case is shortest-path routing
 - infer weights

Intuition: measured paths must be shortest-paths Write as optimization problem (actually a LP)

$$\begin{array}{l} \text{minimize } f = \sum_{e \in E} \varepsilon_e, \\ \text{subject to} \\ w_e - \varepsilon_e \leq d_e, \quad \forall e \in E, \\ w_e + \varepsilon_e \geq d_e, \quad \forall e \in E, \\ \sum_{e \in \hat{\mu}_{ij}} w_e \leq \sum_{e \in \mu} w_e, \quad \forall i, j \in N, \text{ and } \forall \mu \in P_{ij}, \\ w_e, \varepsilon_e \geq 0, \quad \forall e \in E, \end{array}$$

where

 \blacksquare w_e are the link weights

d_e are the links' geographic distances

Rocketfuel as tomography

Rocketfuel technique is a really a type of tomography

- inverse problem
- constraints imposed by measurements
- problem is underconstrained
- Need side-information
 - often called a "prior"
 - The Rocketfuel prior is distance proportionality
 - in absence of other information, shortest-path weights should be geographic distance
 - but we know this is wrong
 - Does it work anyway?

How would we know if it worked?

"accuracy" is meaningless here

How would we know if it worked?

we can change a weight, without changing routing

How would we know if it worked?

we can change a whole lot of weights

Predictive power

What is really interesting is how well we can predict the network behaviour

- obviously has to be behaviour that we don't "see"
 - optimization automatically ensures that weights will fit the observed routing
- two cases considered here
 - unobserved routes (incomplete data)
 - routing after a link failure

Methodology

- Used real data (Abilene, GEANT)
 - doesn't allow for multiple simulations
 - doesn't allow us to vary real prior
- Combined with simulations
 - 1. start with a topology (real, or Rocketfuel)
 - 2. generate a set of traffic
 - 3. generate sets of weights
 - (a) Given weights (some distance proportionality)
 - (b) Unit (less distance proportionality)
 - (c) Unit plus jitter
 - (d) Optimized weights (no distance correlation)
 - (e) "Backbone" weights (spanning tree + backup) (very far from proportional)

Unobserved routes results

Predictive power (on average) for 5 (randomly chosen) unobserved routes

	weights					
Network	given	unit	u+j	synthetic	backbone	
AS 1	97.3%	95.3%	95.5%	92.9%	78.3%	
AS 1239	96.6%	96.4%	96.6%	92.9%	74.2%	
GEANT	91.5%	95.4%	94.4%	90.3%	67.8%	

results are reasonable to very good

real distribution of weight values plays little role, unless it is really extreme

Link failure results

Predictive power for routing after single links failures

	weights					
Network	given	unit	u+j	synthetic	backbone	
AS 1	94.4%	99.9%	99.2%	90.9%	69.5%	
1239	89.9%	100.0%	94.1%	59.8%	27.3%	
GEANT	87.8%	99.7%	94.2%	74.7%	35.5%	

harder task

most cases perform worse than before

- now, weight distribution plays more of a role
 - weights further from distance perform worse

Other results

IMC'08 – p.12/15

Conclusion

- Rocketfuel approach isn't bad (in the absence of anything better)
- Predictive power is a useful methodology not just for this problem but for a range of inverse (tomography) problems where outright accuracy isn't really the important feature

Future work

- improved algorithms
- incorporating topology errors
- further investigation of information reversal

ECMP

Equal-Cost Multiple Paths (ECMP) is important

- effects routing
- effects measurements
- effects inference
- effects interpretation of results

paper lists effects \pm effects of ECMP

Computation Time

1.8 Ghz Intel PC

• times are $O(|E|^3)$

