# Privacy Preserving Distance-Vector Routing or How to Distribute Routing Computations without Distributing Routing Information 

Matthew Roughan

<matthew.roughan@adelaide.edu. au>
School of Mathematical Sciences
University of Adelaide
Joint work with Yin Zhang, Olaf Maennel, and Miro Kraetzl

## Link-State Routing

- Link-state: flood
- topology
- routing information (e.g. metrics)
all nodes learn everything, and can run Dikstra independently
- Why not use this for BGP?
- scalability
- everyone learns everything
- all the gory details of routing policies
- So we use path-vector
- distance vector is a little easier for me


## Distance-vector routing

- How it works
- Each router has its own set of "best routes"
- tell neighbours about your routes
- they choose their own, and continue the process
- "routing by rumour"
- Why is it good?
- hope for some "compression"
- only send best routes
- some information hiding
- don't learn full topology


## Distance Vector example

| subnet | $10.1 .0 .0 / 24$ |
| :--- | :--- |
| next hop | no route |
| distance | infinity |


| subnet | $10.1 .0 .0 / 24$ |
| :--- | :--- |
| next hop | no route |
| distance | infinity |



## Distance Vector example

| subnet | $10.1 \cdot 0.0 / 24$ |
| :--- | :--- |
| next hop | no route |
| distance | infinity |


| subnet | $10.1 .0 .0 / 24$ |
| :--- | :--- |
| next hop | no route |
| distance | infinity |



## Distance Vector example



## Distance Vector example



## Distance Vector example



## Information hiding

- some info is hidden
- like actual topology
- some information is revealed
- distances along the different alternative paths
- some information can be inferred
- hop counts in RIP can tell you a lot about topology, particularly when seen from a few viewpoints


## Information hiding

- what if you had a network where you didn't trust all routers
- perhaps some might be compromised
- e.g., military networks might worry about this
- ad hoc networks
who knows who is using the network?
- some nodes aren't fully trusted
- e.g., Australia and other countries run joint miltary operations, but do they really trust each other?
- Scientia Potentia Est (Francis Bacon, Meditations)
$\square$ increased network knowledge enables other attacks


## Similar problems elsewhere

- The Center for Disease Control and Prevention (CDC) who have to detect new health threats
- need data from
- hospitals
- insurance companies, airlines, ...
- NGOs (e.g. charities)
- other government bodies
$\square$ data is
- proprietary (e.g. insurance risks)
- protected by privacy legislation
- data-mining community has developed solutions
- secure-distributed computing $[3,4,5]$
- privacy-preserving data-mining [6, 7]


## Trusted third party

- simple answer: a trusted third party

■ independent party (e.g. with no vested interest)

- trusted by all routers
- collects data, and determines routes and shares the results
- problems:
- hard to find such parties
- introduce a central point of failure
- doesn't scale


## A Couple of problems

Well known problems in secure distributed computing

- Dining cryptographers
- Millionaire problem
- Bill Gates and Warren Buffet are trying to decide who should put more money into the Gates foundation (*)
- they want to know who is richer
- But they are feeling rather secretive, and don't want to reveal their true wealth.
- how can they decide?
$(*)$ - no real millionaires were harmed in the production of these slides

There are some generic techniques that can help us out

- Secure Distributed Summation (SDS)
- Secure Distributed Dot Product (SDP)
- Oblivious Transfer (OT)
- Secure Distributed Minimum (SDM)


## Honest but curious model

- parties could corrupt the result by changing inputs
- type of calc. has implicit assumption of honesty
- let us extend this
- "Honest but curious" security model
- honest: honestly follow protocol
- curious: may perform more operations to try and learn more information (than they were supposed to learn)
- we do allow colluding coalitions
- there are stronger approaches we could incorporate
- honest majority
- verifiable secrets


## Oblivious transfer $[4,5]$

- there are various versions
- consider 1-in-n Oblivious Transfer (OT)
- Alice has a list of numbers $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$
- Bob has an index $\beta$
- Bob wants to learn $a_{\beta}$
- Alice must not learn $\beta$, and Bob must not learn $a_{i}$ for any $i \neq \beta$.
- Bob learns exactly one item from Alice's list, without Alice learning which item Bob discovered.


## Applications

- the millionaires problem
- more generically: calculating a minimum
- Assume Alice has wealth $w_{A} \in[1, n]$, and Bob has $w_{B} \in[1, n]$, where $n$ is known to both

```
Alice creates a 0
list of n numbers 0
w w
    If Bob gets 0
        then Bob is poorer
    If Bob gets 1
    then Bob is at least as rich
```


## Secure Multi-party Minimum

The problem is reminiscent of the "Cocaine Auction"

- characteristics of our problem are a little different
- we suggest a somewhat different protocol

Requirements:

- Have one central node $C$ that learns which of the participants has the minimal value.
- Participants (other than $C$ ) learn nothing, not even how many other participants there are.
- C learns nothing except who the participants are, and which set of these have the minimal value.
- learns the complete set


## Secure Multi-party Minimum

1. The nodes $\left\{p_{1}, \ldots, p_{N}\right\}$ choose a prime number $n \neq N$, and agree on a random vector $\mathbf{r}=\left(r_{0}, r_{1}, \ldots, r_{K-1}\right)$ where $r_{i}$ is uniformly distributed over $\{0, \ldots, n-1\}$. This could be accomplished by simply designating one of the $p_{i}$ as the generator, or each generating one value in turn.
2. Each node $p_{i}$ also generates a second random vector: $\mathbf{s}_{i}=\left(0, \ldots, 0, s_{x_{i}+1}^{(i)}, s_{x_{i+2}}^{(i)}, \ldots, s_{K-1}^{(i)}\right)$ and creates the following vector $\mathbf{v}_{i}=\left(r_{0}, \ldots, r_{x_{i}}, s_{x_{i}+1}^{(i)}, s_{x_{i}+2}^{(i)}, \ldots, s_{K-1}^{(i)}\right)$, i.e.

$$
v_{i}^{(k)}=\left\{\begin{array}{cl}
r_{k} & \text { if } k \leq x_{i}, \\
s_{k}^{(i)} & \text { otherwise. }
\end{array}\right.
$$

3. The nodes $\left\{p_{1}, \ldots, p_{N}\right\}$ perform a SDS via $C$ to add the $v_{i}^{(k)}$, and they tell $C$ the sum.
4. $C$ generates a random number $w$, and adds the sum of the $v_{i}^{(k)}$ and divides by $N \bmod n$, to get

$$
\mathbf{V}=w+\frac{1}{N} \sum_{i=1}^{N} \mathbf{v}_{i} \bmod n
$$

Hence $\mathbf{V}=\left(w+r_{1}, w+r_{2}, \ldots, w+r_{x}, \cdot, \ldots, \cdot\right)$ where $x=\min _{i}\left\{x_{i}\right\}$.
5. Each node $p_{i}$ does a 1 -in- $K$ oblivious transfer to retrieve the $x_{i}$ th element of the vector $\mathbf{V}$ from $C$.
6. Node $p_{i}$ computes $t_{i}=r_{x_{i}}-V_{i} \bmod n$ and sends $t_{i}$ to $C$.
7. If $t_{i}=w \bmod n$, then $C$ decides (with probability $1 / n$ of being correct) that $p_{i}$ has the minimum value.

- routers advertise "reachability" of destinations to neigbours
- indicates that it has a path to the destination
- no information about the path is revealed
- when you are told of more than one possible path
- run a SDM across the possible next-hops
- given the shortest-path next-hop tells you its distance to the destination


## SRIP leakage

- Information is leakage by SRIP
- length of the shortest path
- this is less than RIP
- in RIP, you learn the length of all paths
- but during convergence of SRIP, you can might change paths, and get to learn more than one best path
- Origin node that originally advertises a destintion adds a random number to the distance to the destination
- so no-one learns actual distances in the network
- still leaks relative distances


## Secure Transitive RTP (STRTP) (xixixion <br> Secure Transitive RIP (STRIP)

1. a node $D$ advertises a "destination" to its neighbours
2. when a node $C$ hears some set of announcements of a path to a destination, it initiates a "shortest-path" computation.
(a) it sends a request message to each neighbour that has advertised a route to that destination (label these neighbours $p_{1}, \ldots, p_{N}$ ).
(b) each node that receives such a request forwards it to its next hop to the destination
(c) the origin node $D$ generates a random number $R$ (generated once for each unique computation), and adds $m_{i}$ the metrics to $R$ for each message
(d) as the reponse is passed back to $p_{i}$, the intermediate nodes add their metrics.
(e) the neighbours of $C$ tell $A$ that they are ready to perform a computation. The peers $p_{i}$ of $C$ each have a value

$$
x_{i}=R+\sum_{j: j \in \mathcal{P}_{i}} m_{j}+m_{i}
$$

where $\mathscr{P}_{i}$ is the set of links along the path from node $D$ to $p_{i}$, and $m_{i}$ is the metric value on the link between $C$ and $p_{i}$.
(f) when $C$ initiates a SDM operation across the $N$ peers. The minimum of $x_{i}$ will also be the minimum of $\sum_{j: j \in \mathcal{P}_{i}} m_{j}+m_{i}$.

## STRIP step 1



## STRIP step 2 (a-b)



## STRIP step 2 (c-d)



## STRIP step 2 (e-f)



## STRIP leakage

- Its better than SRIP
- no-one learns any real distances
$\square$ no-one learns relative distances
- but $C$ does multiple computations
- might infer something about $R$
- C can learn partial ordering during convergence
- STRIP++
- We can restrict information leakage
- split information being sent along paths so that no-one sees metric sums
- no leakage of any of values


## Scalability

- there is a cost to secrecy
- increased communications overhead
- SDM has $O\left(N K \log _{2} n\right)$ communications overhead
- $C$ has $N$ neighbours
- metrics lie in the set $\{1,2, \ldots, K\}$
- probability of a mistake is $1 / n$
- request/response $O(N L \log K)$ communications overhead
- average path length is $L$
- SRIP only need SDM
- STRIP needs both parts


## Conclusion

- we can do stuff that I never imagined (until very recently)
- some of it is really cool

Future

- application to path-vector
- integration with security (authentication)


## Bonus slides

## OT - how it works

1-in-2 Oblivious Transfer

- Alice has a pair of bits ( $a_{0}, a_{1}$ ), and Bob has $\beta$
- trapdoor permutation $f$
- Given key $k$, can choose permutation pair ( $f_{k}, f_{k}^{-1}$ )
- Given $f_{k}$ it is hard to find $f_{k}^{-1}$
- Easy to choose random element from $f_{k}$ 's domain
- random Bit $B_{f_{k}}$ is a poly.-time Boolean function
- $B_{f_{k}}=1$ for half of the objects in $f_{k}^{\prime}$ s domain $B_{f_{k}}=0$ for other half
- no probabilistic polynomial time algorithm can make a guess for $B_{f_{k}}(x)$ that is correct with probability better than $1 / 2+1 / \operatorname{poly}(k)$


## 1-in-2 Oblivious Transfer

- A randomly chooses $\left(f_{k}, f_{k}^{-1}\right)$, and tells $f_{k}$ to $B$
- $B$ randomly chooses $x_{0}$ and $x_{1}$ in $f_{k}^{\prime}$ 's domain, and computes $f_{k}\left(x_{i}\right)$
- $B$ sends $A$ the pair

$$
(u, v)= \begin{cases}\left(f_{k}\left(x_{0}\right), x_{1}\right), & \text { if } \beta=0 \\ \left(x_{0}, f_{k}\left(x_{1}\right)\right), & \text { if } \beta=1\end{cases}
$$

- A computes $\left(c_{0}, c_{1}\right)=\left(B_{f_{k}}\left(f_{k}^{-1}(u), f_{k}^{-1}(v)\right)\right)$
- $A$ sets $d_{i}=a_{i}$ xor $c_{i}$ and sends $\left(d_{0}, d_{1}\right)$ to $B$
- $B$ computes $a_{\beta}=d_{\beta}$ xor $B_{f_{k}}\left(x_{\beta}\right)$


## Dining cryptographers

- $N$ cryptographers are having dinner
- When it is time to pay the bill, the waiter tells them that someone has already paid
- the cryptographers are suspicious by nature (particularly Alice and Bob).
- they suspect the NSA has paid
- not wanting to be compromised by such an association, they need to find out if someone at the table paid, or an external party such as the NSA
- how can they do so, without anyone revealing whether they paid or not?
- of course, the waiter is sworn to secrecy


## Secure Distributed Summation wiow

Problem: $N$ parties each have one value $v_{i}$ and they want to compute the sum

$$
V=\sum_{i=1}^{N} v_{i}
$$

but they don't want any other party to learn their value.

## SDS algorithm [6]

Assume the value $V \in[0, n]$ (for large $n$ )

```
party 1: randomly generate R~U(0,n)
party 1: compute }\mp@subsup{s}{1}{}=\mp@subsup{v}{1}{}+R\operatorname{mod}
party 1: pass s1 to party 2
for i=2 to N
party i: compute si}=\mp@subsup{s}{i-1}{}+\mp@subsup{v}{i}{}\operatorname{mod}
party i: pass si to party i+1
endfor
party 1: compute v}\mp@subsup{v}{N}{}=\mp@subsup{s}{N}{}-R\operatorname{mod}
```

Finally, party 1 has to share the result with the others.
$s_{i}$ will be uniformly randomly distributed over $[0, n]$ and so we learns nothing about any other parties values.

## SDS algorithm



```
party 1: randomly generate }R~U(0,n
party 1: compute }\mp@subsup{s}{1}{}=\mp@subsup{v}{1}{}+R\operatorname{mod}
party 1: pass }\mp@subsup{s}{1}{}\mathrm{ to party 2
for i=2 to N
    party i: compute si}=\mp@subsup{s}{i-1}{}+\mp@subsup{v}{i}{}\operatorname{mod}
    party i: pass si to party i+1
endfor
party 1: compute }\mp@subsup{v}{N}{}=\mp@subsup{s}{N}{}-R\operatorname{mod}
```


## SDS algorithm



## SDS algorithm

party 1: randomly generate $R \sim U(0, n)$
party 1: compute $s_{1}=v_{1}+R \bmod n$
party 1: pass $s_{1}$ to party 2
for $i=2$ to $N$
party i: compute $s_{i}=s_{i-1}+v_{i} \bmod n$
party i: pass $s_{i}$ to party $i+1$

endfor
party 1: compute $v_{N}=s_{N}-R \bmod n$

## Applications

- dining cryptographers
- $v_{i}$ equals 1 if a diner paid, zero otherwise, $n=1$, and $V \in\{0,1\}$
- calculating the total traffic on the Internet
- $v_{i}$ is total per ISP
- need some care to avoid double-counting
- Internet health (e.g. by accumulating certain statistics, e.g. packet drops)
- e.g. $v_{i}$ is packet loss percent at each ISP
- use sum to compute (weighted) average
- time series algorithms (either pre- or post-)
- Sketches
- Assume party $j$ and $j+2$ collude
- They know at least $s_{j}$ and $s_{j+1}$
$\square s_{j+1}-s_{j} \bmod n=v_{j}$
- so they can learn the value of $j$
- Various methods of prevention, e.g.
- divide $v_{i}$ randomly into shares $v_{i m}$ such that

$$
\sum_{m} v_{i m}=v_{i}
$$

- sum over $i$ in a different order for each $m$.

$$
\sum_{i=1}^{N} v_{i m}=V_{m}
$$

- sum $V_{m}$ normally $V=\sum_{m} V_{m}$


## SDP - how it works

(1) A and B agree on two numbers $m$ and $n$
(2) A finds $m$ random vectors $\mathbf{t}_{i}$ such that

$$
\mathbf{a}_{1}+\mathbf{a}_{2}+\ldots+\mathbf{a}_{m}=\mathbf{a}
$$

B finds $m$ random numbers $r_{1}, r_{2}, \ldots, r_{m}$.
(3) for $i=1$ to $m$
(3a) A sends B $n$ different vectors:

$$
\left\{\mathbf{a}_{i}^{(1)}, \mathbf{a}_{i}^{(2)}, \ldots, \mathbf{a}_{i}^{(n)}\right\}
$$

where exactly one $\mathbf{a}_{i}^{(q)}=\mathbf{a}_{i}$, the other
$n-1$ vectors are random
(3b) B computes $\mathbf{a}_{i}^{(j)} \cdot \mathbf{b}-r_{i}$
(3c) A uses 1-in-n OT to retrieve

$$
v_{i}=\mathbf{a}_{i}^{(q)} \cdot \mathbf{b}-r_{i}=\mathbf{a}_{i} \cdot \mathbf{b}-r_{i} .
$$

(4) B computes $V_{b}=\sum_{i=1}^{m} r_{i}$
(5) A computes

$$
V_{a}=\sum_{i=1}^{m} v_{i}=\sum_{i=1}^{m} \mathbf{a}_{i} \cdot \mathbf{b}-r_{i}=\mathbf{a} \cdot \mathbf{b}-V_{b} .
$$

## References

[1] "Data-mining moratorium act of 2003." Introduced in Senate of the United States in January 2003. http://thomas.loc.gov/cgi-bin/query/z?c108:S.188:
[2] A. M. Odlyzko, "Internet traffic growth: Sources and implications," in Optical Transmission Systems and Equipment for WDM Networking II (B. B. Dingel, W. Weiershausen, A. K. Dutta, and K.-I. Sato, eds.), vol. 5247, pp. 1-15, Proc. SPIE, 2003.
[3] A. Yao, "Protocols for secure computations," in Proc. of the 23th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 160-164, 1982.
[4] H. Lipmaa, "Oblivious transfer or private information retrieval." http://www.cs.ut.ee/~lipmaa/crypto/link/protocols/oblivious.php.
[5] B. Pinkas, "Oblivious transfer." http://www.pinkas.net/ot.html.
[6] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Zhu, "Tools for privacy preserving distributed data mining," SIGKDD Explorations, vol. 4, December 2002.
[7] Y. Lindell and B. Pinkas, "Privacy preserving data mining," Journal of Cryptology, vol. 15, no. 3, 2002.
[8] "Internet Activity, Australia." http://www.abs.gov.au/Ausstats/abs@.nsf/0/6445f12663006b83ca256a150079564d?OpenDocument, 2005.
[9] S. Muthukrishnan, "Data streams: Algorithms and applications," 2003. Manuscript based on invited talk from 14th SODA. Available from http://www.cs.rutgers.edu/~muthu/stream-1-1.ps.
[10] G. Cormode and S. Muthukrishnan, "An improved data stream summary: The count-min sketch and its applications," Proceedings of Latin American Theoretical Informatics (LATIN), pp. 29-38, 2004.
[11] W. Du and M. J. Atallah, "Privacy-preserving cooperative statistical analysis," in Proc. of the Annual Computer Security Applications Conference (ACSAC'2001), (New Orleans, LA, USA), December 2001.

