
Julia Part I
Julia for Matlab Users

Prof. Matthew Roughan
matthew.roughan@adelaide.edu.au

http://www.maths.adelaide.edu.au/matthew.roughan/

UoA

Oct 31, 2017

M.Roughan (UoA) Julia Part I Oct 31, 2017 1 / 33

http://www.maths.adelaide.edu.au/matthew.roughan/

I write to find out what I think about something.
Neil Gaiman, The View From the Cheap Seats

M.Roughan (UoA) Julia Part I Oct 31, 2017 2 / 33

Section 1

Get Started

M.Roughan (UoA) Julia Part I Oct 31, 2017 3 / 33

The reason I feel like we can do this is because (I hope) you all
know some Matlab, and Julia is syntactically and operationally
very much like Matlab

I syntax is very similar
I REPL1 is similar

F tab completion, and up arrows work
F ? = help
F ; = shell escape to OS

I JIT compiler
I Use cases are similar

1REPL = Read-Evaluate-Print Loop; old-school name is the shell, or CLI.
M.Roughan (UoA) Julia Part I Oct 31, 2017 4 / 33

So have a go

You should have installed Julia before the workshop
Start it up

I start up varies depending on IDE, and OS
I I am using simplest case (for me): the CLI, on a Mac
I it’s all very Unix-y

Type some calculations

a = 3
b = a + 2
c = a + bˆ2

Create a script, e.g., “test.jl”, and “include” it

include("test.jl")

I its a little more cumbersome than Matlab

M.Roughan (UoA) Julia Part I Oct 31, 2017 5 / 33

Section 2

Julia Isn’t Matlab (or Octave)

M.Roughan (UoA) Julia Part I Oct 31, 2017 6 / 33

Julia may look a lot like Matlab but
under the hood its very different
and there are a lot of changes that affect you

otherwise why would we bother?

M.Roughan (UoA) Julia Part I Oct 31, 2017 7 / 33

Why Julia? Big Differences

Faster (natively)
I depends on what you are doing though

Better name spaces
I better for modules

Better Support for Types and Data Structures
I Strongly typed, but dynamic
I Lots of useful types

F e.g., Dictionaries (associative arrays)

Homoiconic: Julia parses its code into Julia data structures (which
we can potentially manipulate)
Concurrency

M.Roughan (UoA) Julia Part I Oct 31, 2017 8 / 33

(Native) Speed is Key

Easy

High-level languages

Fast

interpreted
interactive
exploratory programming
dynamic types
cool

Juliae.g.
Matlab
R
Python

compiled
static types
old/boring

e.g.
C/C++
Fortran

M.Roughan (UoA) Julia Part I Oct 31, 2017 9 / 33

Faster: Their Benchmarks

y -axis is powers of 10
Relative to C performance
Smaller is better
M.Roughan (UoA) Julia Part I Oct 31, 2017 10 / 33

Faster: My Benchmarks
Simple function that calculates whether 3 points in R2 are in clockwise
or counter-clockwise order.

 3
 v

ec
to

rs

 v
ec

to
riz

ed
 v

er
si

on
 o

f (
1)

3

'p
oi

nt
s'

 3
x2

 a
rr

ay

 2
x3

 a
rr

ay

 x
 a

nd
 y

 C
 c

al
l (

fro
m

 Ju
lia

 o
r M

at
la

b)

 r
aw

 C

 e
m

pt
y

fu
nc

tio
n

ca
ll

 e
m

pt
y

lo
op

10-1

100

101

102

103

104

tim
e

(r
el

at
iv

e
to

 ra
w

 C
 c

od
e) Julia

Matlab

M.Roughan (UoA) Julia Part I Oct 31, 2017 11 / 33

Less Obvious, But Important Differences

Lots, lets deal with 1 by 1
I will focus on the points that gave me the most pain or pleasure

M.Roughan (UoA) Julia Part I Oct 31, 2017 12 / 33

1D and 2D Arrays

Similar to Matlab
I row based definition (as in Matlab)
I similar constructors: zeros, ones, ...

Array definition is slightly different
I no commas in row definition
I commas or semicolons separate rows, but with slightly different

meaning
I can have any type of element

Julia has true one-dimensional arrays, i.e., vectors
I a single column of a 2D array is not the same as a vector
I for me there are some slight weirdnesses in this
I Can lead to confusing bugs to start with, but can also allow for more

efficient code.
F how many Matlab functions begin by checking row or col vector input,

or changing it around?

M.Roughan (UoA) Julia Part I Oct 31, 2017 13 / 33

1D and 2D Arrays

Try It!

A = [1 2 3]
B = [1, 2.0, 3]
C = [1, 2, 3 // 4]
D1 = [[1 2 3], [4 5 6]]
D2 = [1 2 3; 4 5 6]
D3 = [1 2 3

4 5 6]
E = Array{Int64}(2,3)
F = ["string1" "string2"]
G = zeros(2,3)
H = ones(Int64, 3)
?ones

M.Roughan (UoA) Julia Part I Oct 31, 2017 14 / 33

Array Indexing
Can still use Matlab forms : and end

But use square brackets for array indexing
Try It!

A[2]
D3[2,3]
D3[2, :]
D3[2, end]

Square brackets are better
I separates functions from arrays
I consistent with array definition
I avoids name clashes, and hence bugs

But I keep typing it wrong :(

Like Matlab, Julia starts indexing from 1, not 0

M.Roughan (UoA) Julia Part I Oct 31, 2017 15 / 33

Julia arrays are assigned by reference

If you type A = B, you are not creating a copy of B, you are
creating a reference, so
Try It!

X = [1 2 3]
Y = X
Y[1] = 3
X
Z = copy(X) # create an actual copy, not a ref
Z[1] = 4
X

Same is true of function array arguments: they are passed by
reference

I a function can alter its inputs
This is efficient, but can lead to some obscure bugs

I Matlab has a fancy hybrid system, that is actually pretty nice IMHO

M.Roughan (UoA) Julia Part I Oct 31, 2017 16 / 33

Julia has “tuples”

Almost like an array
I ordered sequence of values
I denoted by round braces
I but can index them as with arrays

But they are immutable
I once created you can’t change them
I can be very efficient

Try It!
t = (1,2,3,4)
t[3:end]
t[1] = 2

Used all over the place, e.g.,
I function argument lists
I returning multiple arguments from functions

M.Roughan (UoA) Julia Part I Oct 31, 2017 17 / 33

Range Objects and Iterators

In Julia a:b constructs a Range object, not a vector
You can iterate over a Range

I more efficient because it lazily calculates values
F doesn’t use as much memory
F saves effort if you break out of the loop

If you want the vector use collect, but often you don’t need to

Try It!

x = 3:2:11
for i = x

println(i)
end
x[3:end-1]
x + 10
collect(x)

M.Roughan (UoA) Julia Part I Oct 31, 2017 18 / 33

Semicolons, Ellipsis, and Comments

Matlab
I ; at the end of a line suppresses output
I ... extends a line
I Matlab comments preceded by %

Julia comments preceded by #
Julia

I ; at end of line doesn’t do anything except when typing interactively
in REPL

F e.g., don’t need semi-colons in function defs
I incomplete lines are automatically continued

Try It!2

x = 3 +
2

2I notice that the Atom-based IDE doesn’t do line continuation in its console.
M.Roughan (UoA) Julia Part I Oct 31, 2017 19 / 33

.* notation for everything

The Matlab idea of .* is extended to most other operators
Try It!

[2,4] .* [10, 20]
[1,2,3] .- [1,2,3]
[3,4] .== [3,5]
[3,4] .< [3,5]

And BTW, we can use C-like syntax to
x = 1
x *= 2
x -= 7

but not i++

M.Roughan (UoA) Julia Part I Oct 31, 2017 20 / 33

Stronger support for data types with multiple dispatch

Number

Complex{T<:Real} Real

AbstractFloat Integer Irrational{sym} Rational{T<:Integer}

BigFloat Float16 Float32 Float64 BigInt Bool Signed Unsigned

Int128 Int16 Int32 Int64 Int8 UInt128 UInt16 UInt32 UInt64 UInt8

Try It!
a = 3
b = 2.3
c = 3 // 6
typeof(a), typeof(b), typeof(c)
sqrt(-1)
sqrt(complex(-1))

M.Roughan (UoA) Julia Part I Oct 31, 2017 21 / 33

Tighter scoping rules

Variables have scope of the block they are defined in
Try It!

n = 3
for i=1:n

x = 2i
end
i
x

You need to pre-define the variable outside the loop to use it
outside the loop

I e.g., set i=0 before the loop

M.Roughan (UoA) Julia Part I Oct 31, 2017 22 / 33

Separate Char and String types (yay!)

Single-quotes to define a Char

Double-quotes to define a String

Concatenation operator is *
Try It!

a = ’a’
b = ’x’
ab = "ab"
abc = ab * "c"
abc = ab * b
abc = ab * string(b)

Julia has better string handling in lots of other ways
I regular expressions

M.Roughan (UoA) Julia Part I Oct 31, 2017 23 / 33

Julia Doesn’t Automatically Grow Arrays

This is somewhat annoying but
I avoids inefficient code
I avoids some bugs

An alternative approach is to use a comprehension

Matlab

for i=1:10
x(i) = iˆ2

end

Julia

x = [i*i for i in 1:10]

In Julia this will be (probably) faster than
x = collect(1:10).ˆ2

M.Roughan (UoA) Julia Part I Oct 31, 2017 24 / 33

List Comprehensions

List comprehensions represent in a more mathematical syntax
I e.g.,

{i2 | i = 1,2, . . . ,10}

becomes
[i*i for i in 1:10]

Syntactic sugar for defining one array in terms of another array or
iterator

I Python-like syntax
I Can replace “in” with ∈, or =

Try It!
[x for x ∈ 1:2]
[x*y for x=1:2, y=3:4]

M.Roughan (UoA) Julia Part I Oct 31, 2017 25 / 33

Dictionaries (associative arrays)

Dictionaries associate (key, value) pairs
Looks like an array indexed by arbitrary objects
Try It!

x = Dict()
x[1] = "five"
x["three"] = 3
x["three"]

Note I can grow this as I go
They are called variously

I dictionaries in Smalltalk, Swift, Python, ...
I hashes in Perl, Ruby, ...
I maps in Java, Go, Scala, Haskell, Matlab in latest versions via Java

Julia also has Sets

M.Roughan (UoA) Julia Part I Oct 31, 2017 26 / 33

More on Dictionaries
Constructing dictionaries
Try It!
dict = Dict("a" => 1, "b" => 2, "c" => 3)
dict = Dict{String,Integer}("a" => 1, "b" => 2)
dict = Dict(string(i) =>sin(pi*i/180) for i=0:360)
dict["90"]

Useful functions
Try It!
dict = Dict("a" => 1, "b" => 2, "c" => 3);
keys(dict) # which is an iterator
values(dict) # which is also an iterator
for key in keys(dict)

println("$key => $(dict[key])")
end
Note that entries are not ordered

I use sort(collect(keys(dict)))
I use SortedDict from DataStructures package

M.Roughan (UoA) Julia Part I Oct 31, 2017 27 / 33

Unicode Support

Julia has Unicode support, so the following should be a valid
Lotka-Volerra simulation

🐱 = 10 # number of cats
🐭 = 100 # number of mice
for i=1:n
 🐱 = 🐱 + α*🐱 + β*🐱*🐭
 🐭 = 🐭 + δ*🐭 - γ*🐱*🐭
end

From https://twitter.com/eloceanografo/status/790939841223589888

Try It!

CTRL-SHIFT-u 03b1
\alpha TAB = 1
\pi TAB
c = ’\u03b1’

M.Roughan (UoA) Julia Part I Oct 31, 2017 28 / 33

https://twitter.com/eloceanografo/status/790939841223589888

Unicode Support
Alpha \u0391 Beta \u0392 Gamma \u0393 Delta \u0394

Epsilon \u0395 Zeta \u0396 Eta \u0397 Theta \u0398
Iota \u0399 Kappa \u039a Lambda \u039b Mu \u039c
Nu \u039d Xi \u039e Omicron \u039f Pi \u03a0

Rho \u03a1 Sigma \u03a3 Tau \u03a4 Upsilon \u03a5
Phi \u03a6 Chi \u03a7 Psi \u03a8 Omega \u03a9

alpha \u03b1 beta \u03b2 gamma \u03b3 delta \u03b4
epsilon \u03b5 zeta \u03b6 eta \u03b7 theta \u03b8

iota \u03b9 kappa \u03ba lambda \u03bb mu \u03bc
nu \u03bd xi \u03be omicron \u03bf pi \u03c0

rho \u03c1 altsigma \u03c2 sigma \u03c3 tau \u03c4
upsilon \u03c5 phi \u03c6 chi \u03c7 psi \u03c8
omega \u03c9 complex \u2102 naturals \u2115 rationals \u211a

reals \u211d integers \u2124 forall \u2200 exists \u2203
triangle \u2206 uptri \u2207 isin \u220a pm \u2213

sqrt \u221a int \u222b leq \u2264 geq \u2265
subset \u2283 intersection \u22c2 union \u22c3

For more see
https://docs.julialang.org/en/latest/manual/unicode-input/

M.Roughan (UoA) Julia Part I Oct 31, 2017 29 / 33

https://docs.julialang.org/en/latest/manual/unicode-input/

There are lots more differences between Matlab and Julia ...
but I hope they won’t bite you this week.

M.Roughan (UoA) Julia Part I Oct 31, 2017 30 / 33

Some useful references

https://learnxinyminutes.com/docs/julia/

https://docs.julialang.org/en/release-0.6/
manual/noteworthy-differences/

https://cheatsheets.quantecon.org/

https://docs.julialang.org/en/stable/

M.Roughan (UoA) Julia Part I Oct 31, 2017 31 / 33

https://learnxinyminutes.com/docs/julia/
https://docs.julialang.org/en/release-0.6/manual/noteworthy-differences/
https://docs.julialang.org/en/release-0.6/manual/noteworthy-differences/
https://cheatsheets.quantecon.org/
https://docs.julialang.org/en/stable/

Section 3

Activity

M.Roughan (UoA) Julia Part I Oct 31, 2017 32 / 33

Activity

Create a function to translate an arbitrary positive integer into Roman
numerals.

https://projecteuler.net/problem=89

http://www.rapidtables.com/convert/number/
roman-numerals-converter.htm

https://en.wikipedia.org/wiki/Roman_numerals

Use standard (modern) form Roman numerals
Skeleton

function int2roman(n::Int)
output a Roman numeral string

end

Save your function into a .jl file, and “include” it.

M.Roughan (UoA) Julia Part I Oct 31, 2017 33 / 33

https://projecteuler.net/problem=89
http://www.rapidtables.com/convert/number/roman-numerals-converter.htm
http://www.rapidtables.com/convert/number/roman-numerals-converter.htm
https://en.wikipedia.org/wiki/Roman_numerals

Bonus frames

M.Roughan (UoA) Julia Part I Oct 31, 2017 33 / 33

tic()/toc() performance

10-1 100 101 102 103 104 105

time (microseconds)
10-6

10-5

10-4

10-3

10-2

10-1

100

CC
DF

Julia
Matlab

M.Roughan (UoA) Julia Part I Oct 31, 2017 33 / 33

	Get Started
	Julia Isn't Matlab (or Octave)
	Activity

