#### The Mighty, Mighty Logarithm

Matthew Roughan <matthew.roughan@adelaide.edu.au>

http://www.maths.adelaide.edu.au/matthew.roughan/talks.html

School of Mathematical Sciences, University of Adelaide

April 5, 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

#### Logarithms: some history

- The idea was invented by John Napier (1550-1617) (About the time of Shakespeare (1564-1616))
- John Napier is famous for testing his servants for theft using a black rooster. He covered it in soot and placed it in a darkened room. He then told the servants that the rooster could psychically tell if they were a thief by touch. He then made his servants to go in one by one and pet him. You can guess the rest...
- Invented (1614) Logs to help him with his calculations
- Johannes Kepler, used it for planetary orbit calculations, and from then it caught on

#### Logarithms: the name

- Napier also coined the term *Logarithmus* (in Latin)
- Logarithmus = "ratio-number,"
  - from Greek logos "ratio" + arithmos "number"
  - though perhaps he used "logos" in the sense of "calculation"
- Henry Briggs first used the English word Logarithm

http://jeff560.tripod.com/l.html

#### Logs: a definition

The "log" function is the inverse of the exponential, for instance, if

$$x = 10^{y}$$

then we can reverse the equation as follows

$$y = log_{10}x$$

for example:

$$\log_{10} 100 = \log_{10} \left( 10^2 \right) = 2$$

• • = • •

#### Logs: a graph



・ロト ・雪ト ・ヨト ・ヨト

#### Logs: a definition

We can do logs to any base, i.e., base a

$$x = a^y$$

then we can reverse the equation as follows

$$y = log_a x$$

for example:

$$\log_2 8 = \log_2 \left(2^3\right) = 3$$

But from now on, I will just write log when it doesn't matter.

Logs: the key property

# $\log(xy) = \log(x) + \log(y)$

Matthew Roughan (School of Mathematical S

(日) (周) (三) (三)

#### Logs: we can use that to multiply big numbers

$$xy = a^{\log_a(x) + \log_a(y)}$$

So we just

- take the logs of the two numbers
- add the logs together
- take them to the power of (in this case) a

We can also do division, calculate square roots, and do many other calculations much more easily this way.

#### Logs: tables

- For hundreds of years, mathematicians and engineeers used logs to perform complex calculations
- Calculating the logs themselves was hard though
- So people wrote out, and printed, entire books of tables of logs
- Eventually the tables were replaced by the slide rule
  - much faster than tables
  - but somewhat less accurate (used by engineers)
- Eventually all of that was replace by the pocket calculator
  - but lots of calculators can still calculate logs

#### Logs: slide rules rule



 $\verb+http://en.wikipedia.org/wiki/File:Slide_rule_example2_with_labels.svg$ 

Make your own slide rule

http://www.csiro.au/helix/mathsbyemail/activity/sliderule.html

- Line up the 1 on the first ruler with the 2 on the second
- Find the 3 on the first ruler
- Look at the number it lines up with on the second

#### Weber-Fechner law

- Really two laws:
  - Weber's law just noticeable difference between two stimuli is proportional to the magnitude of the stimuli
  - Fechner's law states that subjective sensation is proportional to the logarithm of the stimulus intensity.
- You need to study differential equations to see that these are the same thing maybe later when you are Uni.
- You can see them in the way we measure stimuli

http://en.wikipedia.org/wiki/Weber-Fechner\_law

#### Weber-Fechner law: sound

- We measure sound levels using the deci-Bell (or dB) scale
- dB scale

measurement = 
$$10 \log_{10} \left( \frac{power}{10^{-12}} \right) dB$$

- the deci- corresponds to the extra factor of 10 at the frontSo
  - 10 dB corresponds to a factor of 10 in power

#### $\mathsf{dB}$

|                                                   | Sound Pressure | Sound Intensity  |
|---------------------------------------------------|----------------|------------------|
| Example                                           | Level (dB)     | $(watts/m^2)$    |
| Snare drums, played hard at 6 inches              | 150            | 1000             |
| 30m from jet aircraft                             | 140            | 100              |
| Threshold of pain                                 | 130            | 10               |
| Jack hammer                                       | 120            | 1                |
| Fender guitar amplifier, full volume at 10 inches | 110            | 0.1              |
| Subway                                            | 100            | 0.01             |
|                                                   | 90             | 0.001            |
| Typical home stereo listening level               | 80             | 0.0001           |
| Kerbside of busy road                             | 70             | 0.00001          |
| Conversational speech at 1 foot away              | 60             | $10^{-6}$        |
| Average office noise                              | 50             | $10^{-7}$        |
| Quiet conversation                                | 40             | $10^{-8}$        |
| Quiet office                                      | 30             | 10 <sup>-9</sup> |
| Quiet living room                                 | 20             | $10^{-10}$       |
| Quiet recording studio                            | 10             | $10^{-11}$       |
| Threshold of hearing for healthy youths           | 0              | $10^{-12}$       |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

#### Weber-Fechner law: sight

• We measure stellar magnitude

$$magnitude - m_0 = -2.5 \log_{10} \left( \frac{F}{F_0} \right)$$

- F is observed flux
- $m_0$  and  $F_0$  are reference magnitudes and flux
- invented by Hipparchus in 150 B.C. (before we formally knew about logs)
- notice its a negative scale
  - brighter stars have lower magnitudes
  - may be measured per frequency band

## Weber-Fechner law

Actually, its not really this simple,

http://en.wikipedia.org/wiki/Stevens'\_power\_law but there are lots of other cases:

- dB is used in lots of electronics (e.g. radar)
- music scale (octaves)
- weight perception
- Perception of time
- Perception of the value of money
- pH scale for acidity/alkalinity
- Earthquakes the scale we use to measure them is the Richter scale ٠
  - at 3, you might only just notice and earthquake (like 480 kg explosion)
  - at 6, buildings would be badly damaged (like a 15 kiloton explosion)
  - at 9, death toll would be in thousands to millions (like a 480 megaton) explosion)

• • = • • = •



#### http://xkcd.com/482/

3



http://xkcd.com/482/

3

<ロ> (日) (日) (日) (日) (日)



http://xkcd.com/482/



http://xkcd.com/482/

- 4 @ > - 4 @ > - 4 @ >



http://xkcd.com/482/

- ∢ ≣ →

▲ @ ▶ < ∃ ▶</p>



http://xkcd.com/482/

3



http://xkcd.com/482/

3



#### http://xkcd.com/482/

3



#### http://xkcd.com/482/

3



#### http://xkcd.com/482/

3



http://xkcd.com/482/

3



http://xkcd.com/482/

3

・ロン ・四 ・ ・ ヨン ・ ヨン



http://xkcd.com/482/

3

・ロン ・四 ・ ・ ヨン ・ ヨン



http://xkcd.com/482/

3



http://xkcd.com/482/

3

<ロ> (日) (日) (日) (日) (日)

- Let you compare highly variable data
  - really big things with really small things
  - you can see them on the same scale
  - big things don't dwarf the small things

#### Log-azimuthal map



http://www.maths.adelaide.edu.au/matthew.roughan/maths\_talks.html

(日) (同) (日) (日) (日)

#### Logs in nature: the log spiral

Let's create a spiral using this function:



#### Logs in nature: the log spiral

- We call log<sub>e</sub> the natural log and write it In
- Jakob Bernoulli called the curve spira mirabilis (marvelous spiral) because it has lots of interesting properties:
  - its also called the equiangular spiral because the angle between a tangent, and the radial line is fixed (as we will see later)
  - it has a bunch of other nice mathematical properties http://jwilson.coe.uga.edu/EMT668/EMAT6680.F99/Erbas/ KURSATgeometrypro/relatedcurves/relatedcurves.html
- Its related to
  - Fiboacci sequence
  - $\blacktriangleright$  the Golden ratio  $\phi$
- It is "self-similar"
- We often see it in nature

#### Self-similar spirals

▲ □ ▶ < □ ▶ < □</p>

æ

## Log spirals: e.g., spiral galaxies



Milky Way (our galaxy) from http://andromida.hubpages.com/hub/milky-way-galaxy

## Log spirals: e.g., spiral galaxies



Milky Way (our galaxy) from http://andromida.hubpages.com/hub/milky-way-galaxy

## Log spirals: e.g., spiral galaxies



Milky Way (our galaxy) from http://andromida.hubpages.com/hub/milky-way-galaxy

#### Log spirals: e.g., storms



Storm over Iceland from
http://en.wikipedia.org/wiki/File:
Low\_pressure\_system\_over\_Iceland.jpg

#### Log spirals: e.g., storms



Storm over Iceland from
http://en.wikipedia.org/wiki/File:
Low\_pressure\_system\_over\_Iceland.jpg

Start a point on a spoke and draw a line at right angles to the next spoke.



Then keep going inwards.

Start a point on a spoke and draw a line at right angles to the next spoke.



Then keep going inwards.

Start a point on a spoke and draw a line at right angles to the next spoke.



The more spokes you have the more accurate the spiral.

Start a point on a spoke and draw a line at right angles to the next spoke.



The more spokes you have the more accurate the spiral.

#### Pursuit curves

- imagine an ant starting at each corner
- he pursues the ant clockwise from himself
- always steers directly towards that ant

http://jwilson.coe.uga.edu/EMT668/EMAT6680.F99/Erbas/KURSATgeometrypro/

relatedcurves/relatedcurves.html

#### Pursuit curves

Each ant pursues the one clockwise from himself.



#### Pursuit curves

• you also get a nice pattern of lines

http://jwilson.coe.uga.edu/EMT668/EMAT6680.F99/Erbas/KURSATgeometrypro/ relatedcurves/relatedcurves.html

Image: A match a ma

## Shells

#### Nautilus shell



2

## Shells

#### Nautilus shell



э

#### Logs in nature: the log spiral

Let's create a spiral using this function:



#### Parameters

- b is just an arbitrary starting point
- a determines how tight the spiral is
- a also determines the direction
  - ▶ *a* > 0 then anticlockwise (as you move inwards)
  - ▶ *a* < 0 then clockwise (as you move inwards)



## Shells

- View from the top is a log spiral
- View from the side is a cone





Shells

• Now rotate an elipse (or circle) around this curve



(日) (同) (三) (三)



#### shell surface wirelfame



#### shell surface wireframe



2

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

#### Shell generator

Login:

Username: megamaths Password: Maths\*5

• WWW shell generator:

http://bandicoot.maths.adelaide.edu.au/shells/shell.cgi Login and start up a web browser. Point it at this URL and fill in the parameters.

Matlab code:

http://www.maths.adelaide.edu.au/matthew.roughan/maths\_talks.html Login and start Matlab. Set the parameters (see the sheet), and then call the 'shell' to generate some pictures.

### Other uses of logarithms

- Entropy
- Calculating computational complexity
- Music
- Number theory
- Hick's law http://en.wikipedia.org/wiki/Hick's\_law
- Fitt's law http://en.wikipedia.org/wiki/Fitts's\_law