Lies, Damn Lies, and Internet Measurements Statistics and Network Measurements

Matthew Roughan <matthew.roughan@adelaide.edu.au> http://www.maths.adelaide.edu.au/matthew.roughan/

ARC Centre of Excellance for Mathematical and Statistical Frontiers School of Mathematical Sciences, University of Adelaide

April 7, 2016

- 2

<ロト (四) (三) (三) (三)

There are three kinds of lies: lies, damned lies, and statistics. Mark Twain

-

★ ∃ >

There are three kinds of lies: lies, damned lies, and statistics. Mark Twain

looking for someone who can make all three of these work for us."

Statistics and Network Measurements

- Everyone here understands the value of network measurements
- However, not wanting to be too controversial, the NM community is hopeless at statistics
 - it's not a unique problem (e.g., see health sciences)
 - but it can cause some misinterpretations and other problems
- War stories
 - e.g., X is better than Y, and related rankings
 - e.g., The red board

A little history of Network Measurements

1969- ARPANET and all that ...

- measurements are part of it, but not much is published (as far as I know)
- stochastic simulation is the norm
- lots of stochastic models proposed and used for data traffic – few measurements used
- c1992-97 Beran, Erramilli, Leland, Taqqu, Sherman, Willinger, Wilson, and a few others publish a series of papers about self-similar traffic
- c1992-97 Vern Paxson does his PhD at Berkeley on "Measurement and Analysis of End-to-End Internet Dynamics"
- c1995-97 Cunha, Bestavros, and Crovella look at web traces
 - $2000+ \ Network \ measurements \ exploded$
 - 2000 First PAM
 - 2001 First IMW (becomes IMC in 2003)
 - 2001 Endace founded

A little history of Network Measurements

- This is hardly a fair history
 - much is missing
 - focus on what I see as seminal (because it influenced me)
 - apologies to those I left out (CAIDA, Neville Brownlee, TMA, and many others)
- I'm trying to make a point though
 - around 92-97 the Internet was growing and changing very rapidly
 - and we went from being data poor to data rich very quickly
 - initial studies were motivated and supported by stochastic models
 - their impact derived from data
- We took the last bit on board
 - data is now seen as key
 - huge efforts to make this data "good"
 - we seem to have forgotten some of the original modelling and statistics that also made those early result so valuable

Some Little Examples

Let's look at a few illustrative examples

Case 1: the test

Statistics means never having to say you're certain

- Common test: test for a problem
 - in medicine it might be a disease
 - ▶ in networks, often look for an "anomaly"
- Let me propose a test for disease X
 - there are two types of error

type I false alarm or false positive

type II failed to detect the problem (false negative)

Case 1: example

• Imagine a hypothetical test for cancer with the following properties

- ▶ if you have the cancer, it will be detected 90% of the time
- if you don't have the cancer, then 90% of the time, the test will tell you that you don't
- 1/100 people have the disease
- You go to your doctor, and he tells you (in a serious voice) that your test has come back positive
- Should you be scared?
 - what is the chance that you actually have the disease?

Case 1: analysis

It's a conditional probability problem, but it's actually easier to just consider frequencies.

Consider 1000 people, on average

- 1 in 100 has cancer, so there are 10 with the disease
- The test will identify 9 in the 10
- 990 don't have cancer, but 1 in 10 of these will have a false alarm
- So the test tell us 108 people have the disease, but only 9 are correct: so the probability you have the disease, given the test is only

$$\frac{9}{108}\simeq 9\%$$

• Our "90% accurate" test has a less than 10% chance of being right

Case 1: network measurement case

- Anomaly detection:
 - ▶ 99% detection probability
 - 1% false alarm probability
- Applied to network
 - SNMP link traffic: bytes and packets
 - collected every 5 minutes, on each link
 - 1000 links
 - average 10 real problems per day

false alarms per day $\simeq 1000 \times 24 \times 12 \times 2 \times 2 \times 0.01 = 11,520$

 $Pr(alarm is genuine) = 9.9/11,520 \simeq 0.0009$

• Result: ops switch off the alarm system

Case 1: the issues

- How many False Alarms are too many
 - often we report a "false-alarm probability"
 - but these test might be conducted many times
 - too many false alarms, and you are "crying wolf"
 - the number depends
 - * how critical are alerts?
 - * how easy is it to fix alarms?
- False Discovery Rate is often what we really need
 - average number of false alarms per discovery
- Tests often have tradeoffs
 - often through choice of a threshold or similar parameter
 - by tuning this, we can exchange false alarms for failed detections
 - testing one without the other is pointless
 - comparisons must be of (ROC) curves of the tradeoff

Case 2: Simpson's Paradox

We commonly report results of experiments

- often we group the data
- often as percentages
- and we think they are meaningful
 - ★ e.g. we can see some causality in the data
- we drawn conclusions from them
 - ★ e.g., A is better than B
- 2 To do analysis properly
 - firstly we need to know whether our proportions are statistically significant
 - but even then beware Simpson's paradox

Case 2: Simpson's Paradox example

Berkeley gender bias case

- University was sued for bias against women
 - more men were accepted than women (of qualified applicants)

	applicants	admitted
Men	8442	44%
Women	4321	35%

- difference unlikely to be due to chance
 - looks like an obvious case of bias against women

Case 2: explanation

Examine individual departments

	Men		Wor	nen
Department	Applicants	Admitted	Applicants	Admitted
A	825	62%	108	82%
В	560	63%	25	68%
С	325	37%	593	34%
D	417	33%	375	35%
E	191	28%	393	24%
F	373	6%	341	7%

- Larger proportion of female applicants to hard departments
- Not really any (provable) bias

Case 2: Simpson's Paradox

Other examples

The issue can often lead to reverses in conclusions

- Batting averages
 - ▶ player A has better average than B in 2012 and 2013
 - but player B's average over the two years is better
- Death penalty case
 - if you look uncritically, it looks like more white people than black are given the death penalty
 - if you control for the race of the victim, then the correlation goes the other way

Case 2: network measurement example

We compare performance of two networks

- we conduct packet probe experiments
 - round-trip probes
 - assume we know how to do that correctly
 - assume we do enough to be statistically significant

results

	loss rate
А	1%
В	5%

• Obviously A is better than B?

Case 2: network measurement example

Cooked up example

But really

- The networks carry 2 types of traffic
 - ► type X
 - \star is real-time, and unresponsive to congestion
 - $\star\,$ both networks prioritise it and it has effectively 0% loss on both
 - ► type Y
 - \star is bulk data, and adapts to congestion
 - ★ the two networks have the same "amount" of congestion, and a resulting loss rate of 10% for this type of traffic
- The two networks have different traffic mixes

	Х	Y
А	90%	10%
В	50%	50%

- hence the loss measurements
- but neither network is better than the other

Case 2: conclusion

- Obviously, the example is cooked
 - in reality, we might use two different types of probes to assess the different performance
 - but the problem is generic, not specific
- But the point remains
 - danger's of averages
 - correlation doesn't imply causality
 - beware hidden "confounding" variables

lurking variables

Obligatory xkcd cartoon

http://xkcd.com/552/

Case 3: estimating loss

- Estimating loss probability
 - packets are dropped in queues
 - want to measure end-to-end loss probability
 - it's a useful measure of how well the network is working
 - high loss rate indicates congestion, or other problems
 - SLAs (Service Level Agreements)
- Strategies
 - active: send probe packets
 - passive: measure traffic at two points
- Metric

$$Prob\{packet \ loss\} = \frac{N_{lost \ packets}}{N_{measured \ packets}}$$

Examples: Performance

- Active performance measurements
- Send probe packets from $A \rightarrow B$ across the network
- Measure the performance experienced by packets

Case 3: estimating loss Questions?

- How many probe packets should I send?
- How accurate is a particular measurement?
- My measurement of network A > network B, what does that mean?

These questions are all really asking the same question!

Case 3: estimating loss

Real question

• If we repeated a set of measurements under the same exact circumstances how much could the result vary?

or the other way around

• Given a desired maximum variability in the estimates, how many measurements do I need?

We often wrap these ideas up in **confidence intervals**, though this isn't the only way to approach the problem.

Case 3: estimating confidence intervals for loss

Naive approach using Gaussian Confidence Intervals (CIs)

• For N measurements, with n losses

$$\hat{p} = \frac{n}{N}$$

and this estimate \hat{p} is unbiased (its mean is correct) and its variance is

$$\sigma_p^2 = p(1-p)/N$$

and so we choose confidence intervals

$$\hat{p} \pm z_{lpha} \sigma_{\hat{p}} / \sqrt{N}$$

where for 95% CIs (the typical case) $z_{lpha}=1.96.$

• Stats intuition: you need enough measurements for the Gaussian approximation to be correct, so make sure *N* is big enough that

$$N\hat{p}(1-\hat{p}) > 10$$

Case 3: estimating confidence intervals for loss What's wrong with this?

- The result is widely cited, but WRONG!
- Why?
 - The estimate \hat{p} is used also to estimate CIs
 - The CIs are symmetric, which means you can have negative values!
 - The measure is continuous, but the experimental results are discrete
 - ► The measure assumes that loss measurements are not correlated!

Case 3: what do we do about it?

• The actual variance of the estimate is

$$Var(\hat{p}) = \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} R(\tau_{ij}),$$

where $R(\cdot)$ is the autocovariance function and the τ_{ij} are the times between measurements

- Process
 - Estimate R(·)
 - * have to be careful how to do this with limited measurements [NR13]
 - Use Cls, but with a better variance estimate

Case 3: cross-validation

Case 3: cross-validation

Matthew Roughan (ARC Centre of Excellance Statistical Traps for Internet Measurement

April 7, 2016 28 / 34

Case 3: conclusion

- Cls for loss-probabilities estimates need more care http://bandicoot.maths.adelaide.edu.au/SAIL/
 - ▶ reasonable CIs are usually MUCH wider than IID Gaussian CIs
 - more measurements are needed than you think
- Most Internet loss measurements studies and tools have ignored the problem
 - many research conclusions are WRONG!!!!
 - there may have been SLA violations reported that weren't supportable
 - network op.s decisions made on the basis of bad information, or network op.s stop listening to measurements
- And that doesn't even take into account the other problems which occur when probabilities are small [SBE+11, BCD01, Wil27]

Some other statistical problems

- Sampling
 - do I need to test everyone?
 - remember many experiments are just samples of some underlying phenomena
 - ★ e.g., packet probes sample a network's performance
- Comparisons
 - ▶ is A better than B?
 - this is a statistical question, whether you know it or not
 - there are aspects to the question not discussed above
 - ranked orderings are particularly dangerous
- Models
 - curve fitting is potentially misleading
 - but lots of people do even that part really badly
- Gnarly "little" issues
 - long-range correlations
 - infinite variance
 - PASTA

What to do

- There's lots of research going on
 - some is on how to do this stuff better
- Be careful with statistics (obviously)
 - learn enough (to be dangerous)
 - consult with a statistician
 - \star this seems to be becoming the norm for medical studies
- Consult your statistician early

To consult the statistician after an experiment is finished is often merely to ask him to conduct a post mortem examination. He can perhaps say what the experiment died of. *Ronald Fisher*

- Sorry about the Stats 101 for those already initiated
- Any questions?

Further reading I

- Lawrence D. Brown, T. Tony Cai, and Anirban DasGupta, Interval estimation for a binomial proportion, Statistical Science 16 (2001), no. 2, 101–133.
- J.Beran, R.Sherman, M.Taqqu, and W.Willinger, Variable-bit-rate video traffic and long range dependence, Tech. Report TM-ARH-020766, Bellcore, 1992.
- Will E. Leland, Murad S. Taqqu, Walter Willinger, and Daniel V. Wilson, **On the** self-similar nature of Ethernet traffic (extended version), IEEE/ACM Transactions on Networking 2 (1994), no. 1, 1–15.
- H.X. Nguyen and M. Roughan, **Rigorous statistical analysis of internet loss measurements**, IEEE/ACM Transactions on Networking **21** (2013), no. 3, 734–745.
 - V. Paxson, **Measurements and analysis of end-to-end internet dynamics**, Ph.D. thesis, U.C. Berkeley, 1997, ftp://ftp.ee.lbl.gov/papers/vp-thesis/dis.ps.gz.

K 4 TE K 4 TE K

Further reading II

Joel Sommers, Rhys A. Bowden, Brian Eriksson, Paul Barford, Matthew Roughan, and Nick G. Duffield, **Efficient network-wide flow record generation**, IEEE Infocom, 2011, pp. 2363–2371.

Edwin B. Wilson, **Probable inference, the law of succession, and statistical inference**, Journal of the American Statistical Association **22** (1927), no. 158, 209–212.