An Algebraic Approach to Internet Routing Day 1

Timothy G. Griffin
timothy.griffin@cl.cam.ac.uk
Computer Laboratory
University of Cambridge, UK
School of Mathematical Sciences Colloquium The University of Adelaide 22 June, 2011

Semigroups

Definition (Semigroup)

A semigroup (S, \oplus) is a non-empty set S with a binary operation such that

$$
\text { ASSOCIATIVE }: a \oplus(b \oplus c)=(a \oplus b) \oplus c
$$

S	\oplus	where
\mathbb{N}^{∞}	\min	
\mathbb{N}^{∞}	\max	
\mathbb{N}^{∞}	+	
2^{W}	\cup	
2^{W}	\cap	
S^{*}	\circ	$(a b c \circ d e=a b c d e)$
S	left	(a left $b=a)$
S	right	$(a$ right $b=b)$

Special Elements

Definition

- $\alpha \in S$ is an identity if for all $a \in S$

$$
\boldsymbol{a}=\alpha \oplus \boldsymbol{a}=\boldsymbol{a} \oplus \alpha
$$

- A semigroup is a monoid if it has an identity.
- ω is an annihilator if for all

S	\oplus	α	ω
\mathbb{N}^{∞}	\min	∞	0
\mathbb{N}^{∞}	\max	0	∞
\mathbb{N}^{∞}	+	0	∞
2^{W}	\cup	$\}$	W
2^{W}	\cap	W	$\}$
S^{*}	\circ	ϵ	
S	left		
S	right		

$$
\omega=\omega \oplus a=a \oplus \omega
$$

Important Properties

Definition (Some Important Semigroup Properties)

$$
\begin{aligned}
\text { COMMUTATIVE } & : a \oplus b=b \oplus a \\
\text { SELECTIVE } & : a \oplus b \in\{a, b\} \\
\text { IDEMPOTENT } & : a \oplus a=a
\end{aligned}
$$

S	\oplus	COMMUTATIVE	SELECTIVE	IDEMPOTENT
\mathbb{N}^{∞}	min	\star	\star	\star
\mathbb{N}^{∞}	max	\star	\star	\star
\mathbb{N}^{∞}	+	\star		
2^{W}	\cup	\star		\star
2^{W}	\cap	\star		\star
S^{*}	\circ		\star	\star
S	left		\star	\star
S	right			

Order Relations

We are interested in order relations $\leq \subseteq S \times S$
Definition (Important Order Properties)
REFLEXIVE : $a \leq a$
TRANSITIVE : $a \leq b \wedge b \leq c \rightarrow a \leq c$
ANTISYMMETRIC : $a \leq b \wedge b \leq a \rightarrow a=b$

$$
\text { TOTAL : } a \leq b \vee b \leq a
$$

	pre-order	partial order	preference order	total order
REFLEXIVE	\star	\star	\star	\star
TRANSITIVE	\star	\star	\star	\star
ANTISYMMETRIC		\star		\star
TOTAL			\star	\star

Canonical Pre-order of a Commutative Semigroup

Suppose \oplus is commutative.
Definition (Canonical pre-orders)

$$
\begin{aligned}
& a \unlhd_{\oplus}^{R} b \equiv \exists c \in S: b=a \oplus c \\
& a \unlhd \unlhd_{\oplus}^{L} b \equiv \exists c \in S: a=b \oplus c
\end{aligned}
$$

Lemma (Sanity check)

Associativity of \oplus implies that these relations are transitive.

Proof.

Note that $a \unlhd_{\oplus}^{R} b$ means $\exists c_{1} \in S: b=a \oplus c_{1}$, and $b \unlhd_{\oplus}^{R} c$ means $\exists c_{2} \in S: c=b \oplus c_{2}$. Letting $c_{3}=c_{1} \oplus c_{2}$ we have $c=b \oplus c_{2}=\left(a \oplus c_{1}\right) \oplus c_{2}=a \oplus\left(c_{1} \oplus c_{2}\right)=a \oplus c_{3}$. That is, $\exists c_{3} \in S: c=a \oplus c_{3}$, so $a \unlhd \unlhd_{\oplus}^{R} c$. The proof for \unlhd_{\oplus}^{L} is similar.

Canonically Ordered Semigroup

Definition (Canonically Ordered Semigroup)

A commutative semigroup (S, \oplus) is canonically ordered when $a \unlhd{ }_{\oplus}^{R} c$ and $a \unlhd\llcorner c$ are partial orders.

Definition (Groups)

A monoid is a group if for every $a \in S$ there exists a $a^{-1} \in S$ such that $a \oplus a^{-1}=a^{-1} \oplus a=\alpha$.

Canonically Ordered Semigroups vs. Groups [Car79, GM08]

Lemma (THE BIG DIVIDE)

Only a trivial group is canonically ordered.

Proof.

If $a, b \in S$, then $\boldsymbol{a}=\alpha_{\oplus} \oplus \boldsymbol{a}=\left(\boldsymbol{b} \oplus \boldsymbol{b}^{-1}\right) \oplus \boldsymbol{a}=\boldsymbol{b} \oplus\left(\boldsymbol{b}^{-1} \oplus \boldsymbol{a}\right)=\boldsymbol{b} \oplus \boldsymbol{c}$, for $c=b^{-1} \oplus a$, so $a \unlhd \oplus$. In a similar way, $b \unlhd_{\oplus}^{R} a$. Therefore $a=b$.

Natural Orders

Definition (Natural orders)
Let (S, \oplus) be a semigroup.

$$
\begin{aligned}
& a \leq_{\oplus}^{L} b \equiv a=a \oplus b \\
& a \leq_{\oplus}^{R} b \equiv b=a \oplus b
\end{aligned}
$$

Lemma
If \oplus is commutative and idempotent, then $a \unlhd_{\oplus}^{D} b \Longleftrightarrow a \leq_{\oplus}^{D} b$, for $D \in\{R, L\}$.

Proof.

$$
\begin{aligned}
a \unlhd \unlhd_{\oplus}^{R} b & \Longleftrightarrow b=a \oplus c=(a \oplus a) \oplus c=a \oplus(a \oplus c) \\
& =a \oplus b \Longleftrightarrow a \leq \oplus \\
a \unlhd \oplus b & \Longleftrightarrow a=b \oplus c=(b \oplus b) \oplus c=b \oplus(b \oplus c) \\
& =b \oplus a=a \oplus b \Longleftrightarrow a \leq{ }_{\oplus}^{L} b
\end{aligned}
$$

Special elements and natural orders

Lemma (Natural Bounds)

- If α exists, then for all $a, a \leq{ }_{\oplus}^{L} \alpha$ and $\alpha \leq_{\oplus}^{R} a$
- If ω exists, then for all $a, \omega \leq_{\oplus}^{L} a$ and $a \leq_{\oplus}^{R} \omega$
- If α and ω exist, then S is bounded.

$$
\begin{array}{lllll}
\omega & \leq \stackrel{L}{\oplus} & a & \leq \oplus & \alpha \\
\alpha & \leq \oplus & a & \leq \oplus & \omega
\end{array}
$$

Remark (Thanks to Iljitsch van Beijnum)

Note that this means for (min, +) we have

$$
\begin{array}{cccc}
0 & \leq_{\text {min }}^{L} & a & \leq_{\text {min }}^{L} \\
\infty & \infty \\
\infty & \leq_{\text {min }}^{P} & a & \leq_{\text {min }}^{?}
\end{array}
$$

and still say that this is bounded, even though one might argue with the terminology!

Examples of special elements

S	\oplus	α	ω	$\leq_{\oplus}^{\mathrm{L}}$	$\leq_{\oplus}^{\mathrm{R}}$
$\mathbb{N} \cup\{\infty\}$	\min	∞	0	\leq	\geq
$\mathbb{N} \cup\{\infty\}$	\max	0	∞	\geq	\leq
$\mathcal{P}(W)$	\cup	$\}$	W	\supseteq	\subseteq
$\mathcal{P}(W)$	\cap	W	$\}$	\subseteq	\supseteq

Property Management

Lemma

Let $D \in\{R, L\}$.
(1) idempotent $((S, \oplus)) \Longleftrightarrow \operatorname{Reflexive}\left(\left(S, \leq_{\oplus}^{D}\right)\right)$
(2) commutative $((S, \oplus)) \Longrightarrow \operatorname{ANTisYmmetric}\left(\left(S, \leq_{\oplus}^{D}\right)\right)$
(0) Selective $((S, \oplus)) \Longleftrightarrow \operatorname{Total}\left(\left(S, \leq_{\oplus}^{D}\right)\right)$

Proof.

(1) $a \leq_{\oplus}^{D} a \Longleftrightarrow a=a \oplus a$,
(2) $a \leq_{\oplus}^{L} b \wedge b \leq_{\oplus}^{L} a \Longleftrightarrow a=a \oplus b \wedge b=b \oplus a \Longrightarrow a=b$
(1) $a=a \oplus b \vee b=a \oplus b \Longleftrightarrow a \leq_{\oplus}^{L} b \vee b \leq_{\oplus}^{L} a$

Direct Product of Semigroups

Let $\left(S, \oplus_{S}\right)$ and $\left(T, \oplus_{T}\right)$ be semigroups.
Definition (Direct product semigroup)
The direct product is denoted $\left(S, \oplus_{S}\right) \times\left(T, \oplus_{T}\right)=(S \times T, \oplus)$, where $\oplus=\oplus_{S} \times \oplus_{T}$ is defined as

$$
\left(s_{1}, t_{1}\right) \oplus\left(s_{2}, t_{2}\right)=\left(s_{1} \oplus_{S} s_{2}, t_{1} \oplus T t_{2}\right) .
$$

Lexicographic Product of Semigroups

Definition (Lexicographic product semigroup (from [Gur08]))

Suppose S is commutative idempotent semigroup and T be a monoid. The lexicographic product is denoted $\left(S, \oplus_{S}\right) \overrightarrow{\times}\left(T, \oplus_{T}\right)=(S \times T, \oplus)$, where $\vec{\oplus}=\oplus_{S} \overrightarrow{\times} \oplus_{T}$ is defined as

$$
\left(s_{1}, t_{1}\right) \vec{\oplus}\left(s_{2}, t_{2}\right)= \begin{cases}\left(s_{1} \oplus_{S} s_{2}, t_{1} \oplus T t_{2}\right) & s_{1}=s_{1} \oplus s s_{2}=s_{2} \\ \left(s_{1} \oplus_{S} s_{2}, t_{1}\right) & s_{1}=s_{1} \oplus_{S} s_{2} \neq s_{2} \\ \left(s_{1} \oplus_{S} s_{2}, t_{2}\right) & s_{1} \neq s_{1} \oplus_{S} s_{2}=s_{2} \\ \left(s_{1} \oplus_{S} s_{2}, \overline{0}_{T}\right) & \text { otherwise } .\end{cases}
$$

Semirings

$(S, \oplus, \otimes, \overline{0}, \overline{1})$ is a semiring when

- $(S, \oplus, \overline{0})$ is a commutative monoid
- $(S, \otimes, \overline{1})$ is a monoid
- $\overline{0}$ is an annihilator for \otimes
and distributivity holds,

$$
\begin{aligned}
& \mathrm{LD}: a \otimes(b \oplus c)=(a \otimes b) \oplus(a \otimes c) \\
& \mathrm{RD}:(a \oplus b) \otimes c=(a \otimes c) \oplus(b \otimes c)
\end{aligned}
$$

A few examples

name	S	\oplus,	\otimes	$\overline{0}$	$\overline{1}$	possible routing use
sp	\mathbb{N}^{∞}	\min	+	∞	0	minimum-weight routing
bw	\mathbb{N}^{∞}	\max	\min	0	∞	greatest-capacity routing
rel	$[0,1]$	\max	\times	0	1	most-reliable routing
use	$\{0,1\}$	\max	\min	0	1	usable-path routing
	2^{W}	\cup	\cap	$\}$	W	shared link attributes?
	2^{W}	\cap	\cup	W	$\}$	shared path attributes?

Encoding path problems

- $(S, \oplus, \otimes, \overline{0}, \overline{1})$ a semiring
- $G=(V, E)$ a directed graph
- $w \in E \rightarrow S$ a weight function

Path weight

The weight of a path $p=i_{1}, i_{2}, i_{3}, \cdots, i_{k}$ is

$$
w(p)=w\left(i_{1}, i_{2}\right) \otimes w\left(i_{2}, i_{3}\right) \otimes \cdots \otimes w\left(i_{k-1}, i_{k}\right) .
$$

The empty path is given the weight $\overline{1}$.
Adjacency matrix A

$$
\mathbf{A}(i, j)= \begin{cases}w(i, j) & \text { if }(i, j) \in E \\ \overline{0} & \text { otherwise }\end{cases}
$$

The general problem of finding globally optimal paths

Given an adjacency matrix \mathbf{A}, find \mathbf{R} such that for all $i, j \in V$

$$
\mathbf{R}(i, j)=\bigoplus_{p \in P(i, j)} w(p)
$$

How can we solve this problem?

Powers and closure

- $(S, \oplus, \otimes, \overline{0}, \overline{1})$ a semiring

Powers, a^{k}

$$
\begin{aligned}
a^{0} & =\overline{1} \\
a^{k+1} & =a \otimes a^{k}
\end{aligned}
$$

Closure, a^{*}

$$
\begin{aligned}
a^{(k)} & =a^{0} \oplus a^{1} \oplus a^{2} \oplus \cdots \oplus a^{k} \\
a^{*} & =a^{0} \oplus a^{1} \oplus a^{2} \oplus \cdots \oplus a^{k} \oplus \cdots
\end{aligned}
$$

Fun Facts [Con71]

$$
\begin{aligned}
\left(a^{*}\right)^{*} & =a^{*} \\
(a \oplus b)^{*} & =\left(a^{*} b\right)^{*} a^{*} \\
(a b)^{*} & =\frac{1}{1} \oplus a(b a)^{*} b
\end{aligned}
$$

Stability

Definition (q stability)

If there exists a q such that $a^{(q)}=a^{(q+1)}$, then a is q-stable. Therefore, $a^{*}=a^{(q)}$, assuming \oplus is idempotent.

Fact 1

If $\overline{1}$ is an annihiltor for \oplus, then every $a \in S$ is 0 -stable!

Lift semiring to matrices

- $(S, \oplus, \otimes, \overline{0}, \overline{1})$ a semiring
- Define the semiring of $n \times n$-matrices over $S:\left(\mathbb{M}_{n}(S), \oplus, \otimes, \mathbf{J}, \mathbf{I}\right)$
\oplus and \otimes

$$
\begin{aligned}
& (\mathbf{A} \oplus \mathbf{B})(i, j)=\mathbf{A}(i, j) \oplus \mathbf{B}(i, j) \\
& (\mathbf{A} \otimes \mathbf{B})(i, j)=\bigoplus_{1 \leq q \leq n} \mathbf{A}(i, q) \otimes \mathbf{B}(q, j)
\end{aligned}
$$

J and I

$$
\begin{aligned}
& \mathbf{J}(i, j)=\overline{0} \\
& \mathbf{I}(i, j)= \begin{cases}\overline{1} & \text { (if } i=j) \\
\overline{0} & \text { (otherwise) }\end{cases}
\end{aligned}
$$

$\mathbb{M}_{n}(S)$ is a semiring!

Check (left) distribution

$$
\mathbf{A} \otimes(\mathbf{B} \oplus \mathbf{C})=(\mathbf{A} \otimes \mathbf{B}) \oplus(\mathbf{A} \otimes \mathbf{C})
$$

$$
\begin{aligned}
& (\mathbf{A} \otimes(\mathbf{B} \oplus \mathbf{C}))(i, j) \\
= & \bigoplus_{1 \leq q \leq n} \mathbf{A}(i, q) \otimes(\mathbf{B} \oplus \mathbf{C})(q, j) \\
= & \bigoplus_{1 \leq q \leq n} \mathbf{A}(i, q) \otimes(\mathbf{B}(q, j) \oplus \mathbf{C}(q, j)) \\
= & \bigoplus_{1 \leq q \leq n}(\mathbf{A}(i, q) \otimes \mathbf{B}(q, j)) \oplus(\mathbf{A}(i, q) \otimes \mathbf{C}(q, j)) \\
= & \left(\bigoplus_{1 \leq q \leq n} \mathbf{A}(i, q) \otimes \mathbf{B}(q, j)\right) \oplus\left(\bigoplus_{1 \leq q \leq n} \mathbf{A}(i, q) \otimes \mathbf{C}(q, j)\right) \\
= & ((\mathbf{A} \otimes \mathbf{B}) \oplus(\mathbf{A} \otimes \mathbf{C}))(i, j)
\end{aligned}
$$

On the matrix semiring

Matrix powers, \mathbf{A}^{k}

$$
\begin{aligned}
\mathbf{A}^{0} & =\mathbf{I} \\
\mathbf{A}^{k+1} & =\mathbf{A} \otimes \mathbf{A}^{k}
\end{aligned}
$$

Closure, \mathbf{A}^{*}

$$
\begin{aligned}
\mathbf{A}^{(k)} & =\mathbf{I} \oplus \mathbf{A}^{1} \oplus \mathbf{A}^{2} \oplus \cdots \oplus \mathbf{A}^{k} \\
\mathbf{A}^{*} & =\mathbf{I} \oplus \mathbf{A}^{1} \oplus \mathbf{A}^{2} \oplus \cdots \oplus \mathbf{A}^{k} \oplus \cdots
\end{aligned}
$$

Note: \mathbf{A}^{*} might not exist (sum may not converge)

Fact 2

If S is 0 -stable, then $\mathbb{M}_{n}(S)$ is $(n-1)$-stable. That is,

$$
\mathbf{A}^{*}=\mathbf{A}^{(n-1)}=\mathbf{I} \oplus \mathbf{A}^{1} \oplus \mathbf{A}^{2} \oplus \cdots \oplus \mathbf{A}^{n-1}
$$

Computing optimal paths

- Let $P(i, j)$ be the set of paths from i to j.
- Let $P^{k}(i, j)$ be the set of paths from i to j with exactly k arcs.
- Let $P^{(k)}(i, j)$ be the set of paths from i to j with at most k arcs.

Theorem

$$
\begin{aligned}
& \text { (1) } \quad \mathbf{A}^{k}(i, j)=\bigoplus_{p \in P^{k}(i, j)} w(p) \\
& \text { (2) } \mathbf{A}^{(k+1)}(i, j)=\bigoplus_{p \in P^{(k)}(i, j)} w(p) \\
& \text { (3) } \quad \mathbf{A}^{*}(i, j)=\bigoplus_{p \in P(i, j)} w(p)
\end{aligned}
$$

Proof of (1)

By induction on k. Base Case: $k=0$.

$$
P^{0}(i, i)=\{\epsilon\},
$$

so $\mathbf{A}^{0}(i, i)=\mathbf{l}(i, i)=\overline{1}=w(\epsilon)$.

And $i \neq j$ implies $P^{0}(i, j)=\{ \}$. By convention

$$
\bigoplus_{p \in\{ \}} w(p)=\overline{0}=\mathbf{I}(i, j)
$$

Proof of (1)

Induction step.

$$
\begin{aligned}
\mathbf{A}^{k+1}(i, j) & =\left(\mathbf{A} \otimes \mathbf{A}^{k}\right)(i, j) \\
& =\bigoplus_{1 \leq q \leq n} \mathbf{A}(i, q) \otimes \mathbf{A}^{k}(q, j) \\
& =\bigoplus_{1 \leq q \leq n} \mathbf{A}(i, q) \otimes\left(\bigoplus_{p \in P^{k}(q, j)} w(p)\right) \\
& =\bigoplus_{1 \leq q \leq n} \bigoplus_{p \in P^{k}(q, j)} \mathbf{A}(i, q) \otimes w(p) \\
& =\bigoplus_{(i, q) \in E} \bigoplus_{p \in P^{k}(q, j)} w(i, q) \otimes w(p) \\
& =\bigoplus_{p \in P^{k+1}(i, j)} w(p)
\end{aligned}
$$

Example with $\left(2^{\{a, b, c\}}, \cap, \cup\right)$

We want matrix \mathbf{A}^{*} to solve this global optimality problem:

$$
\mathbf{A}^{*}(i, j)=\bigcap_{p \in P(i, j)} w(p),
$$

where $w(p)$ is now the union of all edge weights in p.

For $x \in\{a, b, c\}$, interpret $x \in \mathbf{A}^{*}(i, j)$ to mean that every path from i to j has at least one arc with weight containing x.

$\left(2^{\{a, b, c\}}, \cap, \cup\right)$ continued \ldots

The matrix \mathbf{A}^{*}				
	2	3	4	
\{\}	\{\}	\{b\}	$\{b\}$	\{\}
\{\}			\{b	\{
\{b\}	\{b\}	\{\}	\{b	\{b\}
\{b\}	\{b\}		\{	$\{b\}$
\{\}				

Partition Equation (left)

$\mathbf{X}=(\mathbf{A X}) \oplus \mathbf{I}$

$$
\begin{aligned}
& \left(\begin{array}{l|l}
\mathbf{X}_{1,1} & \mathbf{X}_{1,2} \\
\hline \mathbf{X}_{2,1} & \mathbf{X}_{2,2}
\end{array}\right) \\
= & \left(\begin{array}{l|l}
\left(\mathbf{A}_{1,1} \mathbf{X}_{1,1}\right) \oplus\left(\mathbf{A}_{1,2} \mathbf{X}_{2,1}\right) \oplus \mathbf{I}_{1,1} & \left(\mathbf{A}_{1,1} \mathbf{X}_{1,2}\right) \oplus\left(\mathbf{A}_{1,2} \mathbf{X}_{2,2}\right) \\
\hline\left(\mathbf{A}_{2,1} \mathbf{X}_{1,1}\right) \oplus\left(\mathbf{A}_{2,2} \mathbf{X}_{2,1}\right) & \left(\mathbf{A}_{2,1} \mathbf{X}_{1,2}\right) \oplus\left(\mathbf{A}_{2,2} \mathbf{X}_{2,2}\right) \oplus \mathbf{I}_{2,2}
\end{array}\right)
\end{aligned}
$$

We now have four (left) equations

$$
\begin{aligned}
& \mathbf{X}_{1,1}=\left(\mathbf{A}_{1,1} \mathbf{X}_{1,1}\right) \oplus\left(\mathbf{A}_{1,2} \mathbf{X}_{2,1}\right) \oplus \mathbf{I}_{1,1} \\
& \mathbf{X}_{2,1}=\left(\mathbf{A}_{2,1} \mathbf{X}_{1,1}\right) \oplus\left(\mathbf{A}_{2,2} \mathbf{X}_{2,1}\right) \\
& \mathbf{X}_{1,2}=\left(\mathbf{A}_{1,1} \mathbf{X}_{1,2}\right) \oplus\left(\mathbf{A}_{1,2} \mathbf{X}_{2,2}\right) \\
& \mathbf{X}_{2,2}=\left(\mathbf{A}_{2,1} \mathbf{X}_{1,2}\right) \oplus\left(\mathbf{A}_{2,2} \mathbf{X}_{2,2}\right) \oplus \mathbf{I}_{2,2}
\end{aligned}
$$

- Solve for $\mathbf{X}_{2,1}$ with $\mathbf{A}_{2,2}^{*} \mathbf{A}_{2,1} \mathbf{X}_{1,1}$
- Therefore

$$
\begin{aligned}
& \mathbf{X}_{1,1} \\
= & \left(\mathbf{A}_{1,1} \mathbf{X}_{1,1}\right) \oplus\left(\mathbf{A}_{1,2} \mathbf{A}_{2,2}^{*} \mathbf{A}_{2,1} \mathbf{X}_{1,1}\right) \oplus \mathbf{I}_{1,1} \\
= & \left(\mathbf{A}_{1,1} \oplus \mathbf{A}_{1,2} \mathbf{A}_{2,2}^{*} \mathbf{A}_{2,1}\right) \mathbf{X}_{1,1} \oplus \mathbf{I}_{1,1}
\end{aligned}
$$

- Solve for $\mathbf{X}_{1,1}$ with $\left(\mathbf{A}_{1,1} \oplus \mathbf{A}_{1,2} \mathbf{A}_{2,2}^{*} \mathbf{A}_{2,1}\right)^{*}$
- So $\mathbf{X}_{2,1}$ is solved with $\mathbf{A}_{2,2}^{*} \mathbf{A}_{2,1}\left(\mathbf{A}_{1,1} \oplus \mathbf{A}_{1,2} \mathbf{A}_{2,2}^{*} \mathbf{A}_{2,1}\right)^{*}$
- In a similar way, solve for $\mathbf{X}_{1,2}$ and $\mathbf{X}_{2,2}$

This gives a partition of \mathbf{A}^{*} [Con71]

A*

$$
\left(\begin{array}{c|c}
\left(\mathbf{A}_{1,1} \oplus \mathbf{A}_{1,2} \mathbf{A}_{2,2}^{*} \mathbf{A}_{2,1}\right)^{*} & \mathbf{A}_{1,1}^{*} \mathbf{A}_{1,2}\left(\mathbf{A}_{2,2} \oplus \mathbf{A}_{2,1} \mathbf{A}_{1,1}^{*} \mathbf{A}_{1,2}\right)^{*} \\
\hline \mathbf{A}_{2,2}^{*} \mathbf{A}_{2,1}\left(\mathbf{A}_{1,1} \oplus \mathbf{A}_{1,2} \mathbf{A}_{2,2}^{*} \mathbf{A}_{2,1}\right)^{*} & \left(\mathbf{A}_{2,2} \oplus \mathbf{A}_{2,1} \mathbf{A}_{1,1}^{*} \mathbf{A}_{1,2}\right)^{*}
\end{array}\right)
$$

Trivial example of forwarding $=$ routing + mapping

$\mathbf{M}=$| 1 |
| :---: |
| 2 |
| 3 |
| 4 |
| 5 |\(\left[\begin{array}{cc}d_{1} \& d_{2}

\infty \& \infty

3 \& \infty

\infty \& \infty

\infty \& 1

2 \& 3\end{array}\right]\)

Mapping matrix

Forwarding matrix

Routing Matrix vs. Forwarding Matrix (see [BG09])

- Inspired by the the Locator/ID split work
- See Locator/ID Separation Protocol (LISP)
- Let's make a distinction between infrastructure nodes V and destinations D.
- Assume $V \cap D=\{ \}$
- \mathbf{M} is a $V \times D$ mapping matrix
- $\mathbf{M}(v, d) \neq \infty$ means that destination (identifier) d is somehow attached to node (locator) v

More Interesting Example : Hot-Potato Idiom

$\mathbf{M}=$| 1 |
| :---: |
| 2 |
| 3 |
| 4 |
| 5 |\(\left[\begin{array}{cc}d_{1} \& d_{2}

(0,3) \& \infty

(0,3 \& \infty

\infty \& (0,1)

(0,2) \& (0,3)\end{array}\right]\)

Mapping matrix

$$
\mathbf{F}=\begin{gathered}
1 \\
1^{2} \\
2 \\
3 \\
4
\end{gathered}\left[\begin{array}{cc}
(2,3) & (4,3) \\
(0,3) & (4,3) \\
(3,2) & (3,3) \\
(7,2) & (0,1) \\
(0,2) & (0,3)
\end{array}\right]
$$

Forwarding matrix

General Case

$G=(V, E), n$ is the size of V.
A $n \times n$ (left) routing matrix L solves an equation of the form

$$
\mathbf{L}=(\mathbf{A} \otimes \mathbf{L}) \oplus \mathbf{I}
$$

over semiring S.
D is a set of destinations, with size d.
A $n \times d$ forwarding matrix is defined as

$$
\mathbf{F}=\mathbf{L} \triangleright \mathbf{M}
$$

over some structure $(N, \square, \triangleright)$, where $\triangleright \in(S \times N) \rightarrow N$.

forwarding $=$ routing + mapping

Does this make sense?

$$
\mathbf{F}(i, d)=(\mathbf{L} \triangleright \mathbf{M})(i, d)=\sum_{q \in V}^{\square} \mathbf{L}(i, q) \triangleright \mathbf{M}(q, d) .
$$

- Once again we are leaving paths implicit in the construction.
- Forwarding paths are best routing paths to egress nodes, selected with respect \square-minimality.
- \square-minimality can be very different from selection involved in routing.

When we are lucky ...

matrix	solves
\mathbf{A}^{*}	$\mathbf{L}=(\mathbf{A} \otimes \mathbf{L}) \oplus \mathbf{I}$
$\mathbf{A}^{*} \triangleright \mathbf{M}$	$\mathbf{F}=(\mathbf{A} \triangleright \mathbf{F}) \square \mathbf{M}$

When does this happen?
When $(N, \square, \triangleright)$ is a (left) semi-module over the semiring S.

(left) Semi-modules

- $(S, \oplus, \otimes, \overline{0}, \overline{1})$ is a semiring.

A (left) semi-module over S

Is a structure ($N, \square, \triangleright, \overline{0}_{N}$), where

- $\left(N, \square, \overline{0}_{N}\right)$ is a commutative monoid
- \triangleright is a function $\triangleright \in(S \times N) \rightarrow N$
- $(a \otimes b) \triangleright m=a \triangleright(b \triangleright m)$
- $\overline{0} \triangleright m=\overline{0}_{N}$
- $s \triangleright \overline{0}_{N}=\overline{0}_{N}$
- $\overline{1} \triangleright m=m$
and distributivity holds,

$$
\begin{aligned}
& \mathrm{LD}: s \triangleright(m \square n)=(s \triangleright m) \square(s \triangleright n) \\
& \mathrm{RD}:(s \oplus t) \triangleright m=(s \triangleright m) \square(t \triangleright m)
\end{aligned}
$$

Example : Hot-Potato

S idempotent and selective

$$
\begin{aligned}
S & =\left(S, \oplus_{S}, \otimes_{S}\right) \\
T & =\left(T, \oplus_{T}, \otimes_{T}\right) \\
\triangleright_{\text {fst }} & \in S \times(S \times T) \rightarrow(S \times T) \\
s_{1} \triangleright_{\text {fst }}\left(s_{2}, t\right) & =\left(s_{1} \otimes_{S} s_{2}, t\right)
\end{aligned}
$$

$$
\operatorname{Hot}(S, T)=\left(S \times T, \vec{\oplus}, \triangleright_{\mathrm{fst}}\right),
$$

where $\vec{\oplus}$ is the (left) lexicographic product of \oplus_{S} and \oplus_{T}.
Define $\triangleright_{h p}$ on matrices

$$
\left(\mathbf{L} \triangleright_{\mathrm{hp}} \mathbf{M}\right)(i, d)=\sum_{q \in V}^{\vec{\oplus}} \mathbf{L}(i, q) \triangleright_{\mathrm{fst}} \mathbf{M}(q, d)
$$

Sanity Check : does this implement hot-potato?

Define M to be simple if either $\mathbf{M}(v, d)=\left(1_{s}, t\right)$ or $\mathbf{M}(v, d)=\left(\infty_{s}, \infty_{T}\right)$.

$$
\begin{aligned}
& \left(\mathbf{L} \triangleright_{\mathrm{hp}} \mathbf{M}\right)(i, d) \\
= & \sum_{q \in V}^{\vec{\oplus}} \mathbf{L}(i, q) \triangleright_{\mathrm{fst}} \mathbf{M}(q, d) \\
= & \sum_{q \in V}^{\vec{\oplus}}\left(\mathbf{L}(i, q) \otimes_{s} s, t\right) \\
= & \sum_{\mathbf{q}(q, d)=(s, t)}^{\sum_{\vec{\oplus}}} \quad(\mathbf{L}(i, q), t) \\
& \mathbf{M}(q, d)=\left(1_{s}, t\right)
\end{aligned}
$$

Example of hot-potato forwarding

Mapping matrix

$$
\mathbf{F}=\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 3 \\
& 5
\end{aligned}\left[\begin{array}{ll}
(2,3) & (4,3) \\
(0,3) & (4,3) \\
(3,2) & (3,3) \\
(7,2) & (0,1) \\
(0,2) & (0,3)
\end{array}\right]
$$

Forwarding matrix

Example : Cold-Potato

T idempotent and selective

$$
\begin{aligned}
S & =\left(S, \oplus_{S}, \otimes_{S}\right) \\
T & =\left(T, \oplus_{T}, \otimes_{T}\right) \\
\triangleright_{\mathrm{fst}} & \in S \times(S \times T) \rightarrow(S \times T) \\
s_{1} \triangleright_{\mathrm{fst}}\left(s_{2}, t\right) & =\left(s_{1} \otimes_{S} s_{2}, t\right)
\end{aligned}
$$

$$
\operatorname{Cold}(S, T)=\left(S \times T, \overleftarrow{\oplus}, \triangleright_{\mathrm{fst}}\right)
$$

where $\vec{\oplus}$ is the (left) lexicographic product of \oplus_{S} and \oplus_{T}.
Define $\triangleright_{\mathrm{cp}}$ on matrices

$$
\left(\mathbf{L} \triangleright_{\mathrm{cp}} \mathbf{M}\right)(i, d)=\sum_{q \in V}^{\overleftarrow{\oplus}} \mathbf{L}(i, q) \triangleright_{\mathrm{fst}} \mathbf{M}(q, d)
$$

Example of cold-potato forwarding

Mapping matrix

$$
\mathbf{F}=\begin{gathered}
d_{1} \\
1 \\
1 \\
2 \\
3 \\
4 \\
5
\end{gathered}\left[\begin{array}{cc}
(4,2) & (5,1) \\
(4,2) & (9,1) \\
(3,2) & (4,1) \\
(7,2) & (0,1) \\
(0,2) & (7,1)
\end{array}\right]
$$

Forwarding matrix

A simple example of route redistribution

We will will use the routing and mapping of G_{2} to construct a forwarding F_{2}, that will be passed as a mapping to $G_{1} \ldots$

A simple example of route redistribution

- G_{2} is routing with the bandwidth semiring bw
- G_{2} is forwarding with $\operatorname{Cold}(\mathrm{bw}, \mathrm{sp})$
- G_{1} is routing with the bandwidth semiring sp
- G_{1} is forwarding with $\operatorname{Hot}(s p, \operatorname{Cold}(b w, s p))$

First, construct F_{2}

First, construct F_{2}

$$
\mathbf{F}_{2}=\mathbf{L}_{2} \triangleright_{\mathrm{cp}} \mathbf{M}_{2}=\begin{gathered}
6 \\
7 \\
8 \\
9
\end{gathered}\left[\begin{array}{cc}
(30,2) & (30,1) \\
(20,2) & (40,1) \\
(\infty, 2) & (\infty, 1) \\
(20,2) & (\infty, 1)
\end{array}\right]
$$

Now, ship it over to G_{2} as a mapping matrix, using $B_{1,2}$

$\mathbf{B}_{1,2}=$| 1 |
| :---: |
| 2 |
| 3 |
| 4 |
| 5 |\(\left[\begin{array}{cccc}6 \& 7 \& 8 \& 9

\infty \& \infty \& \infty \& \infty

\infty \& \infty \& \infty \& \infty

\infty \& \infty \& \infty \& \infty

(0,(\infty, 0)) \& \infty \& \infty \& \infty

\infty \& (0,(\infty, 0)) \& \infty \& \infty\end{array}\right]\)

Now, ship it over to G_{2} as a mapping matrix, using $B_{1,2}$

$$
\mathbf{M}_{1}=\mathbf{B}_{1,2} \triangleleft_{\mathrm{hp}} \mathbf{F}_{2}=\begin{gathered}
1 \\
2 \\
3 \\
4 \\
5
\end{gathered}\left[\begin{array}{cc}
a_{1} & d_{2} \\
\infty & \infty \\
\infty & \infty \\
(0,(30,2)) & (0,(30,1)) \\
(0,(20,2)) & (0,(40,1))
\end{array}\right]
$$

Finally, construct a forwarding matrix F_{1} for G_{1}

$$
L_{1}=\begin{gathered}
1 \\
1 \\
2 \\
3 \\
4
\end{gathered}\left[\begin{array}{lllll}
0 & 3 & 1 & 5 & 5 \\
3 & 0 & 2 & 2 & 3 \\
1 & 2 & 0 & 4 & 4 \\
5 & 2 & 4 & 0 & 3 \\
5 & 3 & 4 & 3 & 0
\end{array}\right]
$$

Finally, construct a forwarding matrix F_{1} for G_{1}

$$
\mathbf{F}_{1}=\mathbf{L}_{1} \triangleright_{\mathrm{hp}} \mathbf{M}_{1}={ }_{3} \begin{aligned}
& 1 \\
& 4 \\
& 5 \\
& 5
\end{aligned}\left[\begin{array}{cc}
(5,(30,2)) & (5,(40,1) \\
(2,(30,2)) & (2,(30,1) \\
(4,(30,2)) & (4,(40,1) \\
(0,(30,2)) & (0,(30,1) \\
(0,(20,2)) & (0,(40,1)
\end{array}\right]
$$

Bibliography I

[BG09] John N. Billings and Timothy G. Griffin.
A model of internet routing using semi-modules.
In 11th International Conference on Relational Methods in
Computer Science (RelMiCS10), November 2009.
[Car79] Bernard Carré.
Graphs and Networks.
Oxford University Press, 1979.
[Con71] J. H. Conway.
Regular Algebra and Finite Machines.
Chapman and Hall, 1971.
[GM08] M. Gondran and M. Minoux.
Graphs, Dioids, and Semirings : New Models and Algorithms. Springer, 2008.

Bibliography II

[Gur08] Alexander Gurney.
Designing routing algebras with meta-languages. Thesis in progress, 2008.

