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Path Weight with functions on arcs?

For graph G = (V , E), and path p = i1, i2, i3, · · · , ik .

Semiring Path Weight
Weight function w : E → S

w(p) = w(i1, i2)⊗ w(i2, i3)⊗ · · · ⊗ w(ik−1, ik ).

How about functions on arcs?
Weight function w : E → (S → S)

w(p) = w(i1, i2)(w(i2, i3)(· · ·w(ik−1, ik )(a) · · · )),

where a is some value originated by node ik

How can we make this work?
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Algebra of Monoid Endomorphisms ([GM08])

A homomorphism is a function that preserves structure. An
endomprhism is a homomorphism mapping a structure to itself.

Let (S, ⊕, 0) be a commutative monoid.

(S, ⊕, F ⊆ S → S, 0, i , ω) is a algebra of monoid endomorphisms
(AME) if

∀f ∈ F ∀b, c ∈ S : f (b ⊕ c) = f (b)⊕ f (c)

∀f ∈ F : f (0) = 0
∃i ∈ F ∀a ∈ S : i(a) = a
∃ω ∈ F ∀a ∈ S : ω(a) = 0
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Solving (some) equations over a AMEs
We will be interested in solving for x equations of the form

x = f (x)⊕ b

Let
f 0 = i

f k+1 = f ◦ f k

and

f (k)(b) = f 0(b) ⊕ f 1(b) ⊕ f 2(b) ⊕ · · · ⊕ f k (b)

f (∗)(b) = f 0(b) ⊕ f 1(b) ⊕ f 2(b) ⊕ · · · ⊕ f k (b)⊕ · · ·

Definition (q stability)

If there exists a q such that for all b f (q)(b) = f (q+1)(b), then f is
q-stable. Therefore, f (∗)(b) = f (q)(b).
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Key result (again)

Lemma
If f is q-stable, then x = f (∗)(b) solves the AME equation

x = f (x) ⊕ b.

Proof: Substitute f (∗)(b) for x to obtain

f (f (∗)(b)) ⊕ b
= f (f (q)(b)) ⊕ b
= f (f 0(b) ⊕ f 1(b) ⊕ f 2(b) ⊕ · · · ⊕ f q(b)) ⊕ b
= f 1(b) ⊕ f 1(b) ⊕ f 2(b) ⊕ · · · ⊕ f q+1(b) ⊕ b
= f 0(b)⊕ f 1(b) ⊕ f 1(b) ⊕ f 2(b) ⊕ · · · ⊕ f q+1(b)

= f (q+1)(b)

= f (q)(b)

= f (∗)(b)
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AME of Matrices

Given an AME S = (S, ⊕, F ), define the semiring of n × n-matrices
over S,

Mn(S) = (Mn(S), ⊕, G),

where for A,B ∈Mn(S) we have

(A⊕ B)(i , j) = A(i , j)⊕ B(i , j).

Elements of the set G are represented by n× n matrices of functions in
F . That is, each function in G is represented by a matrix A with
A(i , j) ∈ F . If B ∈Mn(S) then define A(B) so that

(A(B))(i , j) =
⊕∑

1≤q≤n

A(i , q)(B(q, j)).
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Here we go again...

Path Weight
For graph G = (V , E) with w : E → F
The weight of a path p = i1, i2, i3, · · · , ik is then calculated as

w(p) = w(i1, i2)(w(i2, i3)(· · ·w(ik−1, ik )(ω⊕) · · · )).

adjacency matrix

A(i , j) =

{
w(i , j) if (i , j) ∈ E ,
ω otherwise

We want to solve equations like these

X = A(X)⊕ B
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Why do we need Monoid Endomorphisms??

Monoid Endomorphisms can be viewed as semirings
Suppose (S, ⊕, F ) is a monoid of endomorphisms. We can turn it into
a semiring

(F , ⊕̂, ◦)

where (f ⊕̂ g)(a) = f (a)⊕ g(a)

Functions are hard to work with....
All algorithms need to check equality over elements of semiring,
f = g means ∀a ∈ S : f (a) = g(a),
S can be very large, or infinite.
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Convolution Product [GM08]

(S, ⊕, ⊗, 0, 1) a semiring
(T , •, 1T ) a monoid
F ⊆ T → S (suitably closed)

Construct a semiring (F , ⊕̂, ?)
(f ⊕̂ g)(a) = f (a)⊕ g(a)

(f ? g)(a) =
⊕

a=b•c
f (b)⊗ g(c)

Note : when S is a ring and T is a commutative semigroup, this
construction results in a ring called a commutative semigroup ring (R.
Gilmer, 1984). Thanks to Snigdhayan Mahanta for pointing this out.
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Lexicographic product of AMEs

(S, ⊕S, F ) ~× (T , ⊕T , G) = (S × T , ⊕S ~×⊕T , F ×G)

Theorem ([Sai70, GG07, Gur08])

D(S ~× T ) ⇐⇒ D(S) ∧ D(T ) ∧ (C(S) ∨ K(T ))

Where
Property Definition
D ∀a,b, f : f (a⊕ b) = f (a)⊕ f (b)
C ∀a,b, f : f (a) = f (b) =⇒ a = b
K ∀a,b, f : f (a) = f (b)
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Functional Union of AMEs

(S, ⊕, F ) +m (S, ⊕, G) = (S, ⊕, F + G)

Fact

D(S +m T ) ⇐⇒ D(S) ∧ D(T )

Where
Property Definition
D ∀a,b, f : f (a⊕ b) = f (a)⊕ f (b)
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Left and Right
right

right(S,⊕,F ) = (S,⊕, {i})

left

left(S,⊕,F ) = (S,⊕,K (S))

where K (S) represents all constant functions over S. For a ∈ S, define
the function κa(b) = a. Then K (S) = {κa | a ∈ S}.

Facts
The following are always true.

D(right(S))
D(left(S)) (assuming ⊕ is idempotent)
C(right(S))
K(left(S))
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Scoped Product

SΘT = (S ~× left(T )) +m (right(S) ~× T )

Theorem

D(SΘT ) ⇐⇒ D(S) ∧ D(T ).

Proof.

D(SΘT )

D((S ~× left(T )) +m (right(S) ~× T ))

⇐⇒ D(S ~× left(T )) ∧ D(right(S) ~× T )

⇐⇒ D(S) ∧ D(left(T )) ∧ (C(S) ∨ K(left(T )))

∧ D(right(S)) ∧ D(T ) ∧ (C(right(S)) ∨ K(T ))

⇐⇒ D(S) ∧ D(T )
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How do we represent functions?

Definition (transforms (indexed functions))
A set of transforms (S, L, B) is made up of non-empty sets S and L,
and a function

B ∈ L→ (S → S).

We normally write l B s rather than B(l)(s). We can think of l ∈ L as
the index for a function fl(s) = l B s, so (S, L, B) represents the set of
function F = {fl | l ∈ L}.
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Example 3 : mildly abstract description of BGP’s
ASPATHs

Let apaths(X ) = (E(Σ∗) ∪ {∞}, Σ× Σ, B) where

E(Σ∗) = finite, elementary sequences over Σ (no repeats)
(m, n) B ∞ = ∞

(m, n) B l =

{
n · l (if m 6∈ n · l)
∞ (otherwise)
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Minimal Sets

Definition (Min-sets)
Suppose that (S, .) is a pre-ordered set. Let A ⊆ S be finite. Define

min.(A) ≡ {a ∈ A | ∀b ∈ A : ¬(b < a)}

P(S, .) ≡ {A ⊆ S | A is finite and min.(A) = A}

Definition (Min-Set Semigroup)
Suppose that (S, .) is a pre-ordered set. Then

P∪min(S, .) = (P(S, .), ⊕.
min)

is the semigroup where

A ⊕.
min B ≡ min.(A ∪ B).
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Min-Set-Map construction

Definition
Suppose that S = (S, ., F ) a routing algebra in the style of
Sobrinho [Sob03, Sob05]. Then

minsetmap(S) ≡ (P(S, .), ⊕.
min, F.

min)

where F.
min = {gf | f ∈ F} and

gf (A) ≡ min.({f (a) | a ∈ A}).
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Let’s turn to BGP MED’s — First, hot potato
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Cold Potato

The (4) represents a MED value.

T. Griffin (cl.cam.ac.uk) An Algebraic Approach to Internet Routing Day 2 T.G.Griffin c©2011 19 / 39



The System MED-EVIL [MGWR02, Sys].

The values (0) and (1) represent MED values sent by AS 4. The other
values are IGP link weights.
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Best route selection at nodes A and B.

rC , rD and rE denote routes received from routers C, D, and E,
respectively
A receives route rE through route reflector B
B receives routes rC and rD through route reflector A

u S BGP best of S at u due to
A {rC , rD} rD IGP
A {rD, rE} rE MED
A {rE , rC} rC IGP
A {rC , rD, rE} rC MED, IGP
B {rD, rE} rE MED
B {rE , rC} rC IGP
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There is not stable routing!

Assume A always has routes rC and rD, so only two cases:
A knows the routes {rC , rD, rE} and so selects rC . This implies
that B has chosen rE , and this is a contradiction, since B would
have {rE , rC} and select rC .
A has only {rC , rD} and selects rD. Since A does not learn a route
from B, we know that B must have selected rC . This is a
contradiction since B would learn rD from A and then pick rE .
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What’s going on with MED?

Assume MEDs are represented by pairs of the form (a, m), where
a is an ASN and m is an integer metric.
The partial order on MEDs is defined as

(α1, m) .M (α2, n) ≡ α1 = α2 ∧m . n.

We can think abstractly of BGP routes as elements of

(P, .P) ~× (M, .M) ~× (S, .S),

where (P, .P) represents the prefix of attributes considered
before MED, and (S, .S) represents the suffix of attributes
considered after MED.
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What is going on?

Suppose that we have the lexicographic product,

(A, .A) ~× (B, .B) ≡ (A× B,.),

and that W is a finite subset of A× B. We would like to explore
efficient (and correct) methods for computing the min-set min.(W ).

Let ∼A and ∼B be the preorders on A and B for which all elements
are related.

Pipeline method
We say the pipeline method is correct when

min
.A~×.B

(W ) = min
∼A~×.B

( min
.A~×∼B

(W )).
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Pipeline
Claim
The pipeline method is correct if and only if no two elements of B are
strictly ordered, or no two elements of A are incomparable.

Proof : For the the interesting direction, suppose that A does contain
two elements a1 and a2 with a1 ] a2, and B does contain two elements
b1 and b2 with b1 <B b2. Then

min
.A~×.B

{(a1,b1), (a2,b2)} = {(a1,b1), (a2,b2)}

but

min
ωA×.B

( min
.A×ωB

{(a1,b1), (a2,b2)})

= min
ωA×.B

{(a1,b1), (a2,b2)}

={(a1,b1)}.

So the pipelined decision process does work when we are dealing
exclusively with total pre-orders. However, it fails to give all of correct
results when we move to general pre-orders.
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Can we generalize the min-set constructions?

Pathfinding through Congruences
Alexander J. T. Gurney, Timothy G. Griffin
12th International Conference on Relational and Algebraic

Methods in Computer Science (RAMiCS 12)
June 2011
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Semigroup congruence

An equivalence relation ∼ on semigroup (S,⊕) is a congruence if

a ∼ b =⇒ (a⊕ c) ∼ (b ⊕ c) ∧ (c ⊕ a) ∼ (c ⊕ b)

(S/∼,⊕∼) is a semigroup

[a]⊕∼ [b] = [a⊕ b]
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Reductions [Won79]

If (S,⊕) is a semigroup and r is a function from S to S, then r is a
reduction if for all a and b in S

1 r(a) = r(r(a))

2 r(a⊕ b) = r(r(a)⊕ b) = r(a⊕ r(b))

For monoids the first axioms is not needed since r(a⊕ 0) = r(r(a)⊕ 0)
from the second axiom.
Similarly, the second axiom can be simplified to a single equality in the
case of a commutative semigroup.
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Reductions on Semirings

A function on a semiring is called a reduction if it is a reduction with
respect to both of the semiring operations.
Similarly, a reduction on a semigroup transform (S,⊕,F ) is a function r
from S to itself, such that r is a reduction on (S,⊕) and

r(f (a)) = r(f (r(a))) (1)

for all a in S and f in F .
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Lemma

For any reduction r on (S,⊕), define a relation ∼r on S by

a ∼r b def⇐⇒ r(a) = r(b).

This ∼r is a congruence.

Proof.
This is obviously an equivalence relation. To prove that it is a
congruence, suppose that a ∼r b, so that r(a) = r(b). Then

r(a⊕ c) = r(r(a)⊕ c) = r(r(b)⊕ c) = r(b ⊕ c)

and likewise for r(c ⊕ a) = r(c ⊕ b). Hence ∼r is indeed a
congruence.
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Lemma

Let (S,⊕) be a semigroup, ∼ a congruence, and ρ\ the natural map. If
θ : S/∼ −→ S is such that ρ\ ◦ θ = id, then θ ◦ ρ\ is a reduction; and ∼
is equal to ∼θ◦ρ\ .

We can represent any reduction r as a pair (∼, θ)
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Specifically, for a given (S,⊕,F ) and reduction r : S −→ S we can
define the quotient S/r as follows.

1 The carrier consists of r -equivalence classes of elements of S; we
can choose the canonical representative of each class to be a
fixed point of r .

2 The semigroup operation is given by ρ\(a)⊕/r ρ\(b) = ρ\(a⊕ b).
3 The functions in F are lifted: f (ρ\(a)) = ρ\(f (a)).

This can be verified to be a semigroup transform. The minset
construction is clearly a special case, where r is min, S is a set of sets,
and ⊕ is set union.
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Modeling Path Errors?

The same node is visited more than once.
The path is intended to be filtered out.
The path violates known economic relationships between
networks.
The path is too long (exceeding a maximum size for routing
announcements).
The origin is unexpected (given neighbours are only anticipated to
advertise certain addresses).
Route data is otherwise malformed.
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Only Simple Paths

S~×P
(S,≤,F ) be an order transform for encoding the path weights.
P be the algebra of paths (N∗,�,C), where p � q if and only if
| p |≤| q |, and C consists of functions cn for all n in N, which
concatenate the node n onto the given path.

Bad paths B ⊆ S × N∗

B ≡ {(s,p) ∈ S × N∗ | p is not simple} .

A reduction over subsets of S × N∗

r(A)
def
= min(A \ E); (2)

where min uses the lexicographic order on S × N∗.
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The construction...

A semigroup transform can be constructed where
the elements are those subsets of S ×N∗ which are fixed points of
r ;
the operation ⊕ is given by A⊕ B def

= r(A ∪ B); and
the functions are pairs (f , cn) for f in F , where

(f , cn)(A)
def
= r({(f (s), cn(p)) | (s,p) ∈ A}).

It can be seen that this algebra implements the simple paths criterion
in the case of multipath routing: if during the course of computation a
non-simple path is computed, it and its associated S-value will be
removed from the candidate set.
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