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Objectives

 Objectives
— Apply your Internet-specific domain knowledge

— Use this domain knowledge to gauge the suitability of
a novel theory to gain an improved understanding of
the Internet

— Recognize that highly engineered systems like the
Internet are not like particle systems studied by
physicists

 Non-objectives
- This is not a course about TCP, BGP, OSPF, ...
- This is not a course about Web 1.0, Web 2.0, P2P, ...

— | will say little (or nothing) about optical networking,
wireless, ad-hoc mobile networks, sensor networks, ...



Expectations

* Warning
— | will be harsh in my comments about the current
applications of the theory of complex networks to the
Internet

— | will support my statements with empirical evidence,
mathematical arguments, and appropriate domain
knowledge

- | am not offering any “easy” solutions, but will try and
convince you that there is “no free lunch” when it
comes to developing a scientifically sound
foundation for a theory of Internet-like systems

e Guiding principle (quoting B.B. Mandelbrot)

- “When exactitude is elusive, it is better to be
approximately right than certifiably wrong.”



Schedule

e Partl (Monday, 2/22/10)
- The theory of complex networks and the Internet
— The Internet as a highly engineered system
- Internet measurements - Know your datal!

e Partll (Tuesday, 2/23/10)
— Analysis of Internet data - Know your statistics!
- Internet modeling - From data-fitting to reverse-engineering
— Challenges in Internet modeling

* Main reference
W. Willinger, D. Alderson, and J.C. Doyle,

“Mathematics and the Internet: A Source of Enormous
Confusion and great Potential”

Notices Amer. Math. Soc. 56, No. 5, 586-599 (2009).

Reprinted in: Princeton Anthology of Best Writing in Mathematics,
Princeton University Press (to appear, Fall 2010)
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Today’s Agenda

 [ntroduction

- The “theory of complex networks” (also called “The
new science of networks” or “Network Science”)

 What “Network Science” has to say about the Internet
- A case study
- Some highly publicized claims
* What engineers have to say about the Internet
- The Internet as a highly engineered system
- Reuvisiting the “Network Science” claims
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Heard about “Network Science”?

* Recent “hot topic” area in science

— Thousands of papers, many in high-impact journals
such as Science or Nature

- Interdisciplinary flavor: (Stat.) Physics, Math, CS
- Main apps: Internet, biology, social science, ...

o Offers an alluring new recipe for studying complex
networks

- Largely measurement-driven
- Main focus is on universal properties
- Exploiting the predictive power of simple models
e small world networks: clustering and path lengths
* scale free networks: power law degree distributions
- Emphasis on self-organization and emergence
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e “First, networks lie at the core of the economic, political, and
social fabric of the 21st century.”

e “Second, the current state of knowledge about the structure,
dynamics, and behaviors of both large infrastructure networks
and vital social networks at all scales is primitive.”

* “Third, the United States is not on track to consolidate the
information that already exists about the science of large,
complex networks, much less to develop the knowledge that
will be needed to design the networks envisaged...”

http://www.nap.edu/catalog/11516.htmI9



Network Science

e What?

“The study of network representations of physical,
biological, and social phenomena leading to
predictive models of these phenomena.” (National
Research Council Report, 2006)

e Why?
“To develop a body of rigorous results that will
improve the predictability of the engineering design
of complex networks and also speed up basic

research in a variety of applications areas.” (National
Research Council Report, 2006)

e Who?
- Physicists (statistical physics), mathematicians

(graph theory), computer scientists (algorithm
design), etc.

10



Basic Questions ask by Network Scientists

Question 1

To what extent does there exist a “network structure” that is
responsible for large-scale properties in complex systems?

. Performance

. Robustness

. Adaptability / Evolvability

. “Complexity”

11



Basic Questions ask by Network Scientists (cont.)

Question 2

Are there “universal laws” governing the structure (and
resulting behavior) of complex networks? To what extent is
self-organization responsible for the emergence of system
features not explained from a traditional (i.e., reductionist)
viewpoint?

12



Basic Questions ask by Network Scientists (cont.)

Question 3

How can one assess the vulnerabilities or fragilities
Inherent in these complex networks in order to avoid
“rare yet catastrophic” disasters? More practically,
how should one design, organize, build, and manage
complex networks?

13



Observation

* The questions motivating recent work in Network
Science are “the right questions”

- network structure and function
- technological, social, and biological

e The issue is whether or not Network Science in its
current form (i.e., dominated by the present
physics/math perspective; e.g., statistical mechanics
+ graph theory) has been successful in providing
scientifically solid answers to these (and and other)
questions.

e Qur litmus test for examining this issue

— Applications of the current Network Science
approach to real systems of interest (e.g., Internet)

14



A Fundamental Issue in the Study of Complex Systems
STRUCTURE o FUNCTION

* components ® constraints — purposeful behavior of

* interactions © uncertainties interacting components

* One approach (reflects a physics-inspired view)

— Structure determines function

- Study the system of interest as an artifact

- Requires no prior knowledge about system

- Hard to know what “matters” from outside looking in
* Another approach (reflects an engineering-inspired view)

- Emphasizes the design of components/interactions to
ensure system function

- Requires knowledge of relationship: structure and
function



The Appeal of the Network Science Approach

STRUCTURE 9 FUNCTION
* components © constraints < purposeful behavior of
* interactions © uncertainties interacting components

Network Science Approach:

e a graph theoretic foundation * |large data samples, uncertainty
—> random ensembles

dynamics, statistical properties
—> statistical mechanics

 emphasis: “likely” configurations

e descriptive models
- graph connectivity (structure) *
— graph evolution (dynamics)

* null hypothesis: random graphs

Common theme:

e self-organization and “emergent” structure (i.e., “emergent complexity”)
16




The Appeal of the Network Science Approach (cont.)

e Focus: features of graph connectivity
- Node degree (i.e., number of connections)
— Distance (i.e., number of edges between two nodes)
- Path length, “degrees of separation”, graph diameter

— Connectivity patterns: clustering, assortativity,
correlation

- Centrality (betweenness)
— Efficiency (ability to propagate information)
* Large data samples + uncertainty: ensemble-based view
— averages, distributions, correlations
- largest values, smallest values (in expectation)

17



From: M.E.J. Newman. The Structure and Function of Complex
Networks, S/AM Review45, 167-256 (2003).
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< | software classes directed 1377 2213 1.61 1.51 0.033 | 0.012 ~-0.119 | 395

» electronic circuits undirected 24 097 53248 4.34 11.05 3.0 | 0010 | 0.030 ~0.154 | 135
peer-to-peer network | undirected KR 1206 1.47 1.28 2.1 | 0012 | 0.011 —0.366 | 6. 354
metabolic network undirected TGS 368G 9.64 256 22 | 0090 | 067 -0.240 | 214

_§ protein interactions undirected 2115 2240 212 fi.80 24 | 0072 | 0.071 ~0.156 | 212

_cgf marine foad web directed 135 508 143 205 0.16 0.23 ~-0.263 | 204

= freshwater food web directed 02 T 10.84 1.90 0.20 0.087 -0.326 | 272
newral network directed 3T 2359 T.68 397 0.18 0.28 ~0.226 | 416, 421



Making Sense of Network Structure: Random Graphs

Study of random graphs popularized by Erdds and Rényi
(c.1960)

One of most popular models: G, ,
- n vertices
— each edge appears independently with probability p

“Emergence of giant component”. p =c¢/n forcnear 1
— for ¢ < 1 size of largest component is a.s. O(log n)
- for ¢ = 1 size of largest component is a.s. O(n?/3)
— for ¢ > 1 size of largest component (called the giant
component ) is a.s. O(n)
p=1/n is called the critical point or critical threshold

Similarity to phase transition in physics makes random
graphs popular with those trained in statistical mechanics
Random graphs as the null hypothesis for complex

networks Source: P. Erdds and A. Rényi. 1960. On the evolution of random graphs.
Publ. Math. Inst. Hungar. Acad. Sci. 5, 17-61. 19



Basic Observation in Network Science

Many important complex network systems do not look
like random graphs (a la Erdos-Renyi)...!

How do real networks compare to random graphs?

Are there universal patterns in structure or behavior?

How to “explain” these patterns?

20



Alternative 1: “Small-World” Networks

Networks that share properties of
both regular and random graphs

— clustering coefficient (C)
- characteristic path length (L)

“Six degrees of separation”
phenomenon

Empirical evidence
- social networks (e.g. film actors)
- power grid
- neural networks

Easily generated via rewiring
- start with a lattice
— p = prob of rewiring each edge
- “shortcuts” at small values of p

Source: Watts, DJ; Strogatz, S H. 1998. Collective
dynamics of "small-world' networks, NATURF 393(668).

regular small world random

C high high low

L high low low
i ;EI O O @ O ' 5" - i =
nzfp % C(p) § C(0) o i
o ]
0.4 | o _
L{p) § L(0 - i
T - L o]
) S : M-
O 01 o001 L i

Increasing randomness
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Alternative 2: “Scale-free” Networks

Networks with a distribution of node [ log(P(X>x)) ~log(c)-« log(x)
degree (# connections) that follows a

power law in the tail:
P(X>x) ~cx“ as Xx— o
(a >0, ¢ constant)

Empirical evidence
- Internet (router, AS, WWW)
- biology (gene regulation)
— social networks (film actors)

Not found in random graphs

Can be generated via preferential N7 o
attachment (PA) in growth S A
PA models exhibit striking features s N A
— error tolerance (random |oss) ) )
~ attack vulnerability (hubs) DA -
- zero epidemic threshold — % e S, :

10%}

P (D>d) x #nodes

10t}

100

Node Rank: R(d)

Reference: A.-L. Barabdsi and R. Albert. 1999. Emergence of ‘ b7/ (I AN
scaling in random networks. Science 286, 509-512. °




Current Network Science Approach: Recap

Studying complex networks as artifacts

Primarily treat complex systems as simple graphs

— Universality, at a price of abstracting away domain-specific info
Heavily influenced by graph theory:

- random graphs as a null hypothesis

- generative models that are likely to reproduce graph statistics

— analysis based on statistical equilibrium (statistical physics)
Graph characterization based on statistical signature

- Small-world networks: clustering and path lengths
— Scale-free networks: power law degree distributions
Emphasis on self-organization and emergence

As Internet researchers, WHY SHOULD WE CARE ?

23



As Internet researchers, why should we care?

e “Network Science” as a new scientific discipline ...

24



Publications in Network Science Literature by Discipline

(As recorded by the Web of Science? on October 1, 2007; coutesy D. Alderson)

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007*

"high impact" 1 1 5 4 17 13 22 16 9 4 92
physics 1 7 26 62 124 139 230 260 350 286 |1485
biology, chemistry, medicine 0 1 4 16 22 31 67 80 94 77 | 392
computer science 0 1 2 7 10 22 47 61 64 19 | 233
sociology, economics 0 1 2 6 7 11 14 22 15 16 94
engineering 0 0 1 2 7 4 13 15 22 12 76
complex systems 0 1 1 2 3 7 11 13 18 22 78
applied mathematics 0 0 0 0 2 6 6 10 29 21 74
earth science 0 1 1 2 7 4 6 11 11 0 43
business, management 0 0 0 1 2 1 4 6 9 1 24
2 13 42 102 201 238 420 494 621 458 2591

Caveats:

* A search of the terms “scale free” or “small world” returned 3151 entries, from which 560 were irrelevant to

network science.

* The Web of Science only lists peer-reviewed journal publications and does not include conference proceedings

(important for Computer Science).

* “High Impact” includes Nature, Science, Proc. Nat. Acad. Sci., Scientific American, and American Scientist

* “Physics” publications include: Phys. Rev. Letters, Physica, Physical Review, Journal of Physics, Modern Physics

Letters, Journal of Statistical Physics, Int’l J. of Modern Physics, Europhysics Letters, European Physical Journal,

Chinese Physics Letters, Journal of the Korean Physical Society, and more. ..

25



Publications in Network Science Literature by Discipline

(As recorded by the Web of Science! on October 1, 2007; courtesy D. Alderson)

"high impact"
physics

biology, chemistry, medicine
computer science
sociology, economics

engineering

complex systems
applied mathematics

earth science

business, management

Journal Publications (cumulative)

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007*

1 1 ) 4 17 13 22 16 9 4 92
1 7 26 62 124 139 230 260 350 286 |1485
0 1 4 16 22 31 67 80 94 77 | 392
0 1 2 7 10 22 47 61 64 19 | 233
0 1 2 6 I 11 14 22 15 16 94
0 0 1 2 I 4 13 15 22 12 76
0 1 1 2 3 7 11 13 18 22 78
0 0 0 0 2 6 6 10 29 21 74
0 1 1 2 7 4 6 11 11 0 43
0 0 0 1 2 1 4 6 9 1 24
2 13 42 102 201 238 420 494 621 458 2591
3000
O "highimpact"
2500 T M physics
O biology, chemistry, medicine
2000 T O computer science
M sociology, economics
1 500 T O applied mathematics
B engineering
1000 O earth science
H complex systems
500 1 M business, management
0 T I I I I I I I I

1998 1999 2000

2001 2002 2003 2004 2005 2006 2007*;



Most Cited Publications in Network Science Literature

(As recorded by the Web of Science! on October 1, 2007; courtesy D. Alderson)

Article cites
1. Watts, DJ; Strogatz, SH. 1998. Collective dynamics of "small-world' networks, NATURE 393(668). 2244
2. Barabasi AL, Albert R. 1999. Emergence of scaling in random networks. SCIENCE 286 (543). 2110
3. Albert R, Barabasi AL. 2002. Statistical Mechanics of Complex Networks. REV. OF MODERN PHYSICS 74 (1). 1972
4. Newman MEJ. 2003. The structure and function of complex networks. SIAM REVIEW 45 (2). 960
5. Jeong H, Tombor B, Albert R, et al. 2000. The large-scale organization of metabolic networks. NATURE 407 903
(6804).

6. Strogatz, SH. 2001. Exploring complex networks, NATURE 410(6825). 884
1. Albert R, Jeong H, Barabasi AL. 2000. Error and attack tolerance of complex networks. NATURE 406 (6794). 147
8. Dorogovisev SN, Mendes JFF. 2002. Evolution of networks. ADV IN PHYSICS 51 (4). 636
9. Giot, L; Bader, J.S.; Brouwer, (; Chaudhuri, A; Kuang, B; et al. 2003. A protein interaction map of Drosophila 550
melanogaster, SCIENCE, 302(5651).

10. Milo, R; Shen-Orr, S; ltzkovitz, S; Kashtan, N; Chklovskii, D; Alon, U. 2002. Network motifs: Simple building 489
blocks of complex networks, SCIENCE 298(5594).

11. Amaral LAN, et al. 2000. Classes of small-world networks. PROC. NAT. ACAD. SCI. 97 (21). 475
12. Ravasz, E; Somera, AL; Mongru, DA; Oltvai, ZN; Barbasi, AL. 2002. Hierarchical organization of modularity in | 457
metabolic networks, SCIENCE 297(5586).

13. Pastor-Satorras, R; Vespignani, A. 2001. Epidemic spreading in scale-free networks, PHYS. REV. LETT. 86(14). 440
14. Tong, AHY, et al. 2004. Global mapping of the yeast genetic interaction network. SCIENCE 303(5659) 412
15. Barabasi, AL; Albert, R; Jeong, H. 1999. Mean-field theory for scale-free random networks, PHYSICA A 272. 264
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As Internet researchers, why should we care?

“Network Science” for the masses ...

28



The “New Science of Networks”

How Everything Is Conneé¢ted to
Everything Else and What It Means for
Business, Science, an d Everyday Life

Linked

"Linked could alter the way we think about all of the

networks that affect our lives.” —The New York Times

Albert-Laszlé Barabasi

With a New Aflterword

THE s_c'a'eu'c'g c =
A CONNECTED AGF

DUNCAN J. . WATTS
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As Internet researchers, why should we care?

* “Network Science” for the (Internet) experts ...

30



The “New Science of Networks”

The Structure and Dynamics of

NETWORKS

Modeling
the Internet AN N
and the Web R i oy

e ald WPy dndll B G~ TR

MARK NEWMAN
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. - N < 4
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As Internet researchers, why should we care?

 “Network Science” for undergraduate/graduate students
in Computer Science/Electrical Engineering

32



The “New Science of Networks”

 New course offerings

33


http://www.cc.gatech.edu/classes/AY2010/cs8803ns_fall/
http://www.cc.gatech.edu/classes/AY2010/cs8803ns_fall/
http://www.netscience.usma.edu/about.php
http://nicomedia.math.upatras.gr/courses/mnets/index_en.html
http://nicomedia.math.upatras.gr/courses/mnets/index_en.html
http://www-personal.umich.edu/~mejn/courses/2004/cscs535/index.html
http://www-personal.umich.edu/~mejn/courses/2004/cscs535/index.html
http://www-personal.umich.edu/~mejn/courses/2004/cscs535/index.html
http://www-personal.umich.edu/~mejn/courses/2004/cscs535/index.html
http://www.phys.psu.edu/~ralbert/phys597_09-fall
http://www.phys.psu.edu/~ralbert/phys597_09-fall
http://www.phys.psu.edu/~ralbert/phys597_09-fall

As Internet researchers, why should we care?

e ...and most importantly, because “Network Science” has
been a constant source for basic mis-conceptions ...

34



Common (Mis)perceptions

 Power laws in network connectivity...
— Are necessary and sufficient for “scale-free structure”
— Imply critically connected “hubs”
— Create an Achilles’ heel vulnerability
- Yield a zero epidemic threshold for contagion
 Power laws in network connectivity show ...
— Evidence of fundamental self-organization in networks

— This self-organization is a universal feature of
technological, biological, social and business networks

e Power laws in network connectivity mean ...

- Efforts to protect complex networks should focus on the
most highly-connected components

35



The Main Point of these Talks ...

| will show that in the case of the Internet ...

The application of “Network Science” in its current form
has led to conclusions that are not controversial but simply
wrong.

| will deconstruct the existing arguments and generalize
the potential pitfalls common to “Network Science.”

| will also be constructive and illustrate an alternative
approach to “Network Science” based on
engineering considerations.

36



What does “Network Science” say about the Internet

* |llustration with a case study
- Problem: Internet topology
— Approach: Measurement-based
— Result: Predictive models with far-reaching implications
 Textbook example for the power of “Network Science”
— Appears solid and rigorous
— Appealing approach with surprising findings
— Directly applicable to other domains
e Based on 3 seminal papers
- J.-J. Pansiot and D. Grad, CCR 1998
- M.Faloutsos, P. Faloutsos, and C. Faloutsos, Sigcomm’99
- R. Albert, H. Jeong, and A.-L. Barabasi, Nature 2000.
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What does “Network Science” say about the Internet

e Measurement technique
— traceroute tool

— traceroute discovers compliant (i.e., IP) routers along
path between selected network host computers

38



Running traceroute: Basic Experiment

e Basic “experiment”
- Select a source and destination
- Run traceroute tool

e Example

- Run traceroute from my machine in Florham Park,
NJ, USA to maths.adelaide.edu.au

39



Running “traceroute maths.adelaide.edu.au” from NJ

. 1 135.207.176.3 1 ms 1 ms 1 ms

fp-core.research.att.com (135.207.3.1) 1ms 1 ms 1 ms

ngx19.research.att.com (135.207.1.19) 1 ms Oms O ms

12.106.32.1 1 ms 1 ms Oms

12.119.12.73 2ms 2ms 2ms

cr81.nw2nj.ip.att.net (12.122.105.114) 3ms 4 ms 3 ms

crl.n54ny.ip.att.net (12.122.105.29) 4 ms 4 ms 3 ms

n54ny0ijt.ip.att.net (12.122.81.57) 3ms 3ms 3 ms

* xe-2-2.r03.nycmny01.us.bb.gin.ntt.net (129.250.8.41) 4 ms *
ae-1.r21.nycmnyO1.us.bb.gin.ntt.net (129.250.2.220) 3 ms 3 ms 3 ms

. 11 as-0.r20.chcgil09.us.bb.gin.ntt.net (129.250.6.13) 27 ms 24 ms 25 ms

. 12 ae-0.r21.chcgil09.us.bb.gin.ntt.net (129.250.3.98) 24 ms 24 ms 24 ms

. 13 as-5.r20.snjsca04.us.bb.gin.ntt.net (129.250.3.77) 76 ms 80 ms 76 ms

. 14 ae-1.r21.plalcaOl.us.bb.gin.ntt.net (129.250.5.32) 77 ms 85 ms 77 ms

. 15 po-3.r04.plalcaO1.us.bb.gin.ntt.net (129.250.2.218) 81 ms 81 ms 81 ms

. 16 140.174.28.138 80 ms 80 ms 77 ms

. 17 so0-3-3-1.bbl.a.syd.aarnet.net.au (202.158.194.173) 239 ms 237 ms 239 ms

. 18 ge-0-0-0.bb1.b.syd.aarnet.net.au (202.158.194.198) 235 ms 234 ms 235 ms

. 19 s0-2-0-0.bbl.a.mel.aarnet.net.au (202.158.194.33) 246 ms 250 ms 250 ms

. 20 s0-2-0-0.bbl.a.adl.aarnet.net.au (202.158.194.17) 254 ms 258 ms 258 ms

. 21 gigabitethernetO.erl.adelaide.cpe.aarnet.net.au (202.158.199.245) 259 ms 255 ms 258 ms
. 22 gwl.erl.adelaide.cpe.aarnet.net.au (202.158.199.250) 258 ms 255 ms 254 ms
. 23 pulteney-pix.border.net.adelaide.edu.au (192.43.227.18) 256 ms 283 ms 281 ms
. 24 129.127.254.237 260 ms 256 ms 256 ms

° 25 * k% %

. 26 staff.maths.adelaide.edu.au (129.127.5.1) 263 ms 273 ms 255 ms

L]
© 00 N O O &~ W N
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What does “Network Science” say about the Internet

 Available data: from large-scale traceroute experiments
- Pansiot and Grad (router-level, around 1995, France)
— Cheswick and Burch (mapping project 1997--, Bell-Labs)
- Mercator (router-level, around 1999, USC/ISI)
— Skitter (ongoing mapping project, CAIDA/UCSD)

- Rocketfuel (state-of-the-art router-level maps of
individual ISPs, UW Seattle)

- Dimes (ongoing EU project)

42



http://research.lumeta.com/ches/map/

43



http://www.isi.edu/scan/mercator/mercator.html

44



http://www.caida.org/tools/measurement/skitter/

45



Background image courtesy JHU. applied physics labs
http://www.cs.washington.edu/research/networking/rocketfuel/bb
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What does “Network Science” say about the Internet (cont.)

e |Inference

— Given: traceroute-based map (graph) of the router-
level Internet (Internet service provider)

- Wanted: Metric/statistics that characterizes the
inferred connectivity maps

- Main metric: Node degree distribution

48



http://www.isi.edu/scan/mercator/mercator.html
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What does “Network Science” say about the Internet (cont.)

e Surprising finding
- Inferred node degree distributions follow a power law

- A few nodes have a huge degree, while the majority
of nodes have a small degree

50



Power Laws and Internet Topology

A few nodes have lots of connections
Source: Faloutsos et al (1999)

"SR010rank’
eyBA2RE) x| -0821Fd ) —

"GT1108ranK"
834783 X **({ -0.811358) —

PRSP | PP | PP | A 0.1 PEPRPTUT | PP | PUP PP | A
1 10 100 1000 10000 1 10 100 1000 10000

DB Most nodes have few connections

Fignre 3: The rank plots. Log-log plot of the ontdegree dy versns the rank vy in the sequence of decrensing ontdegres.



What does “Network Science” say about the Internet (cont.)

e Motivation for developing new network/graph models
- Dominant graph models: Erdos-Renyi random graphs

- But: Node degrees of Erdos-Renyi random graph

models follow a Poisson distribution )



What does “Network Science” say about the Internet (cont.)

e New class of network models
- Preferential attachment (PA) growth model

* Incremental growth: New nodes/links are added
one at a time

e Preferential attachment: a new node is more
likely to connect to an already highly connected
node (p(k) = degree of node k)

— Captures popular notion of “the rich get richer”

- There exist many variants of this basic PA model

— Generally referred to as “scale-free” network models
e Key features of PA-type network models

- Randomness enters via attachment mechanism

- Exhibit power law node degree distributions
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What does “Network Science” say about the Internet (cont.)

e Model validation

- The models “fit the data” because they reproduce
the observed node degree distributions

- The models are simple and parsimonious

* PA-type models have resulted in highly publicized claims
about the Internet and its properties

- High-degree nodes form a hub-like core

- Fragile/vulnerable to targeted node removal
— Achilles’ heel

- Zero epidemic threshold
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Case Study Recapitulated: Step 1 - Measurements

On Routes and Multicast Trees in the Internet

Jean-Jacques PANSIOT
Dominigue GEAD

Université Louis Pasteur - LSIT URA-CNRS 1871
Computer Science Depavtment
7, rue Descartes 67084 Srasbourg Cedex, France
{pansiot, grad}iadpt-info.u-strasbg. fi
htip :{fdpt-info.u-strasbg fiv~{pansiot, grad}

Abstract : Multicasting has an increasing importance
for network applications such as groupware or
videoconferencing. Several multicast routing protocols
have been defined. However they cannot be wused
directly in the Internet since most inter-domain routers
do no implement multicasting. Thus these protocols are
mainly tested either on a small scale inside a domain, or
through the Mbone, whose topology is not really the
same as Internet topology. The purpose of this paper is
to construct a graph using actual routes of the Internet,
and then to use this graph to compare some
parameters - delays, scaling in term of state or traffic
concentration - of multicast routing trees constructed
by different algorithms - source shortest path trees and
shared trees.

Key words : Fouting, rontes, Internet, mulficast, shortest
path trees, centered trees
Introduction

Multicast routing 1z an active research area. The problem
15 to transmut 8 data packet from one source to K recervers.

have therefore ne state information to mamtain. Newer
protocols, usable on & larger scale are now developed
Scme are based on & unigque centered tree per group, such
as CBT [BFC 93], others may alse mclude source rooted
trees, such as PIM-SM [EFD 97]. In these two cases,
Touters not part of a tree do mot memr any cost for
mamtaning trees. On the other hand, mtermediate routers
with degree 2 in the nmilticast tree must maimtain iree state
and signaling, although their role 15 only to Sorward
mnlticast packets in much the same way a3 umicast packets.
Sclutions [GPZ 96] have been proposed to free these
degree 2 nodes fiom any cost In mamtaming multicast
trees.

The geal of this paper i1s twofold. Firsily to get some
experimental data on the shape of mulnicast trees one can
actually obtain in Intermet: node degree, route length...
These data could be used in particular to calibrate tree and
graph generators used to simmlate or validate network
protocols. Secondly to get more directly usable information
for people working on nmlficast tree construction. For
example, are there many nodes of degree 2 7 Are tees
roated in different somrees i the same sranh very different

Reference: J.-J. Pansiot
and D. Grad, 1998. On
routes and multicast
trees in the Internet.
Computer
Communication Review
28 (1), 41-50.
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Case Study Recapitulated: Step 2 - Analysis

On Power-Law Relationships of the Internet Topology

Michalis Faloutsos
1.C. Riverside
Dept. of Comp. Science
michalis@cs.ucr.edu

Abstract

Despite the apparent randomness of the Internet, we dis-
cover some surprisingly simple power-laws of the Internet
topology. These power-laws hold for three snapshots of the
Internet, between November 1997 and December 1998, de-
spite a 45% growth of its size during that period, We show
that our power-laws fit the real data very well resulting in
correlation coefficients of 96% or higher.

Qur observations provide a novel perspective of the struc-
ture of the Internet. The power-laws describe concisely
skewed distributions of graph properties such as the node
outdegree. In addition, these power-laws can be used to
estimate important parameters such as the average neigh-
borhood size, and facilitate the design and the performance
analysis of protocols. Furthermore, we can use them to gen-
erate and select realistic topologies for simulation purposes,

1 Introduction

“What does the Internet look like?” “Are there any topolog-
ical properties that don’t change in time?” “How will it look
like a year from now?" “How can I generate Internet-like
graphs for my simulations?" These are some of the questions
motivating this work.

In this paper, we study the topology of the Internet and

wa idantife cavaral nemae Do Thaeb b s mmn wmen Alnncoan

Petros Faloutsos

. of Toronto
Dept. of Comp. Science
pfal@ca.toronto,edu

Christos Faloutsos *
Carnegie Mellon Univ.
Dept. of Comp. Science
christos@cs.cmu.edu

hops) that are useful for the analysis of protocols and for
epeculations of the Internet tupo!cgr in the future,

Modeling the Internet topology” is an imtportant open
problem despite the attention it has attracted recently, Pax-
son and Floyd consider this problem as a major reason “Why
We Don't Know How To Simulate The Internet” [16]. Sev-
eral graph-generator models have been proposed [23] [5] [27],
but the problem of creating realistic topologies is not yet
solved; the selection of several parameter values are left to
the intuition and the experience of each researcher.

As our primary contribution, we identify three power-
laws for the topology of the Internet over the duration of a
year in 1998, Power-laws are expressions of the form y o 29,
where a is a constant, z and y are the measures of interest,
and o stands for “proportional to”. Some of those exponents
do not change significantly over time, while some exponents
change by approximately 10%. However, the important ob-
servation is the existence of power-laws, i.e., the fact that
there is some exponent for each graph instance. TDuring
1098, these power-laws hold in three Internet instances with
good linear fits in log-log plots; the correlation coefficient of
the fit is at least 96% and usually higher than 98%. In ad-
dition, we introduce a graph metric to quantify the density
of a graph and propose a rough power-law approximation of
that metric. Furthermore, we show how to use our power-
laws and our approximation to estimate useful parameters

af tha Tntarnat ench as tha nuaearn moeeaboe of soiekbaes

Reference: M. Faloutsos,

P. Faloutsos, and C.
Faloutsos, 1999. On
power-law relationships
in the Internet topology.
Proc. ASM Sigcomm ’99,
Computer
Communication Review
29 (4), 251—-262.
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Case Study Recapitulated: Step 3 - Modeling

The Internet’s Achilles’ Heel:

Error and attack tolerance of complex networks

Réka Albert, Hawoong Jeong, Albert-Liaszld Barab:asi

Department of Physics, University of Notre Dame, Notre Dame, IN {6556

Many systems that we perceive as truly complex display an amazing degree
of tolerance against errors. For example, relatively simple organisms - such as
various species of bacteria - grow, persist and reproduce despite large waria-
tions in their environment, or drastic pharmaceutical interventions, an error
tolerance attributed to the robustness of the underlying cellular (metabolic)
network [1]. The increasingly complex communication networks responding to
the demand generated by the addition of diverse communication devices to the
Internet [2] display a surprising degree of robustness: while key components
{routers, lines) regularly malfunction, local failures rarely lead to the loss of the
global information-carrying ability of the network. The stability of these and
other complex systems against local errors and failures is often attributed to
the redundant wiring of the functional web defined by the systems’ components,
guaranteeing multiple alternative routes between most pairs of nodes. In this
paper we demonstrate that such error tolerance is not shared by all redundant
systems, but it is displayed only by a class of inhomogeneously wired networks,
called scale-free networks. We find that scale-free networks, describing a number
of systems, such as the www [3—5], Internet [6], social networks [7] or a cell [8],
display an unexpected degree of robustness, the ability of their nodes to commu-
nicate being unaffected by even unrealistically high failure rates. Howewver, this
error tolerance comes at a high price: these networks are extremely vulnerable

to attacks, l.e. to the selection and removal of a few nodes that play the most

Reference: R. Albert, H.
Jeong, A.-L. Barabasi,
2000. The Internet’s
Achilles’ heel: Error and
attack tolerance of
complex networks.
Nature 406, 378—382.
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Case Study Recapitulated: Step 4 - Prediction/Implications

nature

- ae — o —

Achilles’ heel of the Internet

wu'y X ¢ th

Ocean sncdc sventa ¢t 2] 11w

Ceoliagnaling

Cover Story: Nature 406, 2000.
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CNN.com: Scientists spot Achilles heel of the Intemet

An estimated three percent of nodes are down at an given time but no one
notices because the system copes with it.

"The reason this is so is because there are a couple of very big nodes and all
messages are going through them. But if someone maliciously takes down
the biggest nodes you can harm the system in incredible ways. You can very
easily destroy the function of the Internet," he added.

Barabasi, whose research is published in the science journal Nature,
compared the structure of the Internet to the airline network of the United
States.

"That's exactly the situation on the Internet: there are a couple of hubs that
are crucial to the system," Barabasi explained.

http://archives.cnn.com/2000/TECH/computing/07/26/science.internet.reut/index.htmi
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Beyond the Internet ...

e Social networks

Information networks

Technological networks

* Biological networks

Reference: M.E.J. Newman. The Structure and Function of

Complex Networks, SIAM Review 45, 167-256 (2003).
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avg, degree
# nodes # edges

n m

\

avg,

length

\

scaling

clustering

path exponent coeff.

—

deg. corr.

l coeff.

network type 2 { ct) | €@ r | Ref(s).
film actors undirected 149913 5516482 [ 11343 | 34% 23 | 020 | 078 0.208 | 20, 416
oompany directors undirected T6T3 55302 | 144 | 460 0.59 | 0.88 0.276 | 105, 323
math coauthorship undirected 253339 196 489 392 | AT 0.15 (0.3 0120 | 107, 182
physics coautharship | undirected 52909 245 300 921 | 619 0.45 | 056 0,363 | 311, 313

-2; biology eoauthorship | undirected 1 520251 11803064 1553 | 4.92 0.08%8 | 0.60 0.127 | 311, 313

7 | telephone eall graph undirected 17000000 80000000 316 2.1 89
email messages directed 30012 X6 300 144 | 495 | 1.5/20 0.16 136
email address baoks | directed 16881 57029 338 | 522 017 | 013 0.002 | 321
student relationships | undirected 573 477 166 | 16.01 0.005 | 0.001 | -0.020 | 45
sexual ocontacts undirected 2810 3.2 265, 266

= | WWW nd.edu directed 269 504 1497 135 5SS | 1127 | 2124 | 0.1 | 029 ~0.067 | 14, 3

:.: WWW Altavista directed 20354006 | 2130000000 | 1046 | 1608 | 2.1/27 |

; citation network directed TR83339 6716198 BAT 3.0/ 351

“_é_l Roget's Thesaurus directed | 022 3103 499 | 487 013 | 015 0157 | 24
word ec-aoeurrence undirected 160902 17000000 [ 7013 27 0.4 119, 157
[nternet undirected 10697 31992 598 | 33 25 | 0035 | 039 | -0.189 | 36, 148

7 | power grid undirected 1911 (i 594 267 | 1899 010 | 0.080 | -0.003 | 416

fc train routes undirected 58T 19603 [ 6679 | 216 0.69 | -0.033 | 366

?_; software packages directed [ 439 1723 120 | 242 | 16/1.4 | 0070 | 0.082 | -0.016 | 318

T | software classes directed | 377 2213 161 1.51 0.033 | 0.012 | -0.119 | 395

= | electranic circuits undirected 24007 53248 4.3 | 1105 30| 0010 | 0.030 | -0.154 | 155
peer-to-peer network | undirected SR80 1206 147 | 4.28 2.1 | 0.2 § 0.011 | 0366 | 6. 35
metabolic network undirected 765 3 686 964 | 256 22 | 0.0% | 067 | -D240 | 214

Tj protein interactions | undirected 2115 2240 212 | 6.80 24 | 0.072 | 0071 | -D156 | 212

_%‘ marine food web directed 135 508 143 | 205 016 | 023 | -0.263 | 204

= | freshwater food web | directed 02 7 10.84 1.90 0,20 0.087 | -0.326 | 272
newral network directed X7 2359 T68 | 307 018 | 028 | -0.226 | 416, 421



Two opposite reactions ...

 Network scientists
— General excitement (huge number of papers)

- The Internet story has been repeated in the context
of biological networks, social networks, etc.

- Renewed hope that large-scale complex networks
across the domains (e.g., engineering, biology, social
sciences) exhibit common features (universal
properties).

e |Internet researchers
— General disbelief
- We “know” the claims are not true ...

- What’s wrong with “Network Science” applied to the
Internet?
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A Simple Observation

 The “discovery” of the scale-free nature of the Internet
requires no domain knowledge

- Nodes and edges have generic meaning

— Protocols play no role

- Completely agnostic to architectural details

— Ignores the highly engineered design of the Internet

e Abstraction buys universal applicability
— The physicist's view of “details don’t matter”

e Attention to “details” buys credibility with domain experts
- The engineer’s view of “details make all the difference”
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A Look at the Internet as a Highly Engineered System

e Scrutinizing the “Network Science” view of the Internet
— Use of domain knowledge
- Use of measurements
 Topics to be discussed
— The layered architecture of the Internet
— Vertical decomposition
- Horizontal decomposition
* |mplications
- Internet connectivity
- What Internet topology?
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computer

The Internet: The User Perspective
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The Internet: The Engineering Perspective

my web
computer server

oooo

router router




my
computer

The Internet is a LAYERED Network

The perception of the Internet as a simple, user-
friendly, and robust system is enabled by
FEEDBACK and other CONTROLS that operate

both WITHIN LAYERS and ACROSS LAYERS.

TCP

Y =

These ARCHITECTURAL DETAILS
(protocols, layers, etc.) are MOST
ESSENTIAL to the nature of the Internet.

[INK |




Internet Architecture: Vertical Decomposition

my
computer
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The Internet hourglass

Link technologies
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The Internet hourglass

Courtesy Hari Balakrishman



Internet Traffic

B Web traffic
B Email traffic

Applications

WWW, FTP, Email, P2P, ...

TCP

Transmission

Ethernet, ATM, POS, WDM, ...

B P2P traffic

B and many others ...

B Packet traces

B [P flows
B TCP connections

M Bits, bytes
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Internet Architecture: Horizontal Decomposition

my web
computer server

O
NLi1tar rolitar =

Benefit: Individual components can fail
(provided that they “fail off”) without
disrupting the network.

TCP ‘ '

LD

Horizontal decomposition
Each level is decentralized and asynchronous




Internet Connectivity/Topology

\ /

« Consider a (vertical) layer of the Internet hourglass
« Expand it horizontally
 Give layer-specific meaning to “nodes” and “links” -,






Internet Connectivity: Layer 1

e Nodes

- Components of the physical infrastructure of the
Internet (e.g., routers, switches, ROADMSs, etc.)

- Physical plant of ISP
e Links
— Physical connections (e.g., optical cables)

— Two connections between the same physical devices
may or may not be co-located

e Comments

— Layer 1 connectivity is by and large proprietary and very
difficult to measure

— Layer 1 connectivity is critical for assessing the
vulnerability of a network

- Key factor: Technology
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Internet Connectivity: Layer 2

* Nodes

- Routers and switches
e Links

— Layer 2 connectivity

— Typically consists of many Layer 1 connections
e Comments

- Layer 2 connectivity is very hard to measure

- Given the difficulties with Layer 1 connectivity, Layer
2 connectivity is often referred to as the “physical
topology” or “router-level topology” of the Internet

- Key factors: Technology, economics
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Internet Connectivity: Layer 3 (IP router)

* Nodes
- |IP Routers
e Links
— 1-hop IP-level connectivity
e Comments
- Layer 3 connectivity is relatively easy to measure

— Layer 3 connectivity is more “logical” or “virtual” than
Layer 2 connectivity in the sense that it is ignhorant of
Layer 2 technologies such as ATM or MPLS

- Key factors: Technology, economics
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http://www.caida.org/tools/measurement/skitter/
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Internet Connectivity: Layer 3 (PoP)

* Nodes

- Point-of-Presence (PoP)
e Links

- |IP-level connectivity between PoPs

— Typically consists of multiple router-level connections
e Comments

- PoP-level connectivity is relatively easy to measure

- PoP-level connectivity is more “logical” or “virtual”
than IP router-level connectivity in the sense that it
groups IP routers by their roles as backbone and
access routers

- Key factors: Technology, economics
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Internet Connectivity: Layer 3 (AS)

* Nodes
— Autonomous system or domain (AS)
e Links
- Well-defined business relationship between two ASes

- Examples: Customer-provider, peer-to-peer, sibling
relationship

e Comments

— AS-level connectivity is “logical” or “virtual” in the
sense that it’'s about business relationships

— AS-level connectivity says little about physical
connectivity, except that two ASes that have an

established business relationship can also exchange
traffic on some physical link

- Key factors: Economy
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From Router-Level to Autonomous System (AS)-Level Internet




AS Graphs = Business Relationships
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AS Graphs Obscure Physical Connectivity!
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The AS graph
may look like this. Reality may be closer to this...

Courtesy Tim Griffin



Internet Connectivity: Layer 3 (Internet Eco-system)

e Nodes

- Company/business (e.g., ISP, Content provider, CDN,
large enterprise, educational institution)

e Links
— Business relationship between two companies
— Derived from existing AS relationships
e Comments
— Build on top of the AS-level connectivity
- Each company consists of at least one AS

— Large companies consist of many different ASes and
use them to implement their business model (e.g.,
AT&T has about 20-30 ASes, main one is 7018)

- Key factors: Economics
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Internet Connectivity: Application Layer (Web)

* Nodes
— Static html pages
e Links
- Hyperlinks
e Comments
- Huge (directed) graph

— Connedctivity in the Web graph says nothing about the
underlying physical connectivity of the Internet

- Key factors: User behavior, socio-economic
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(Part of the) Web Graph

< — | - T = -y 3 -r > = N

Nodes = documents, connettions ="ﬁyper|inks



Internet Connectivity: Application Layer (P2P)

* Nodes

- Users of a peer-to-peer network

- Examples: Gnutella (peers, super peers), BitTorrent
e Links

- Communication between 2 P2P users
e Comments

- Different P2P systems yield different connectivity
structures

— Connectivity in a P2P graph says nothing about the
underlying physical connectivity of the Internet

- Key factors: User behavior, socio-economic
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Internet Connectivity: Application Layer (OSN)

* Nodes
— Users of an Online Social Network (OSN)
- Examples: Facebook, MySpace, Flickr, Twitter
e Links
- Friendship relationship
- Interaction
e Comments
- Different OSNs yield different connectivity structures

— Connedctivity in an OSN says nothing about the
underlying physical connectivity of the Internet

- Key factors: User behavior, socio-economic
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The Many Facets of Internet Topology

B Web graph
B Email graph

B P2P graph
\ Applications B OSN graphs, etc.

TCP B Autonomous System (AS) or
«— AS-level ecosystem

B IP-level connectivity (i.e.,
Transmission layer 3)

B Router-level connectivity
(i.e., layer 2)




virtual

physical

Internet Connectivity/Topology

\ /

dynamic

static
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What Internet topology?

There is no “generic” Internet topology
The many facets of Internet topology
- Router-level (physical)
- IP-, AS-level (logical)
— Application-level (logical)
Details of each connectivity structure make a big difference
- Some are constrained by existing technology
- Some are the result of prevailing economic conditions
- Some are shaped by user behavior
- Some involve a combination of all of the above
Lack of specificity can cause confusion
- Knocking out nodes in the AS graph???
— Spread of viruses in the Web graph???
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The Many Facets of Internet Connectivity/Topology

B Web graph
B Email graph
H P2P graph

B and many others ...

B Autonomous System (AS) or
AS-level ecosystem

4
\‘ B [P-level connectivity (i.e.,

layer 3)

B Router-level connectivity
(i.e., layer 2)




The Internet looks nothing like this ...

R. D'Souza et al., PNAS, 2007
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... but more like this!
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The Real Story about the Internet ...

 The “scale-free story” for the Internet and its implications
(e.g. Achilles’ heel) is wrong

 The dramatic differences in perspective can be attributed
to a complete lack of data hygiene, errors in the analysis of
the data, incompatible modeling assumptions, and faulty
reasoning.

 On a more constructive note, | will illustrate an alternative
approach to “Network Science” that complements the
dominant physics perspective with a much needed
engineering-based perspective.
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Main Problems with the “Network Science” Approach

e No critical assessment of available data
* Ignores all networking-related “details”

 QOverarching desire to reproduce observed properties of the
data even though the quality of the data is insufficient to say
anything about those properties with sufficient confidence

 Reduces model validation to the ability to reproduce an
observed statistics of the data (e.g., node degree distribution)
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How to fix “Network Science”?

Know your data!
- Importance of data hygiene

Know your statistics!
- Every dataset can be “mined” to yield power-laws

Take model validation more serious!
- Model validation # data fitting

Apply an engineering perspective to engineered systems!
- Design principles vs. random coin tosses
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Internet Measurements - Know your Data!

February 22, 2010



Internet Measurements: Connectivity (1)

e Recent example of measurement-driven Internet research
- What is the structure of the real (wired) Internet?
- Answer: Go and measure it!
e Difficulties with measuring Internet connectivity
- No central agency/repository
- Economic incentive for ISPs to obscure network structure
— Direct inspection is typically not possible
* Practical approaches

- No tailor-made tools exist to measure any connectivity
structure that arises in the Internet context

- The tools that are used are based on measurement
experiments/engineering hacks

102



Internet Measurements: Connectivity (2)

 Main difference compared to Internet traffic research

- There is always a mismatch between what we can
measure and what we want to measure!

- How to make sense of what we can measure?

- “Are the available measurements of good enough quality
for the purpose of inferring a particular Internet
connectivity structure?”

 |llustration of the physicist’s vs. the engineer’s views
- Example 1: Internet router-level connectivity
- Example 2: Internet AS-level connectivity
- Example 3: Internet overlay connectivity (OSNSs)
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Example 1: Internet Router-level Connectivity

e Nodes
- |P routers or switches
e Links

- Physical connection between two IP routers or
switches

e Measurement technique
— traceroute tool

— traceroute discovers compliant (i.e., IP) routers along
path between selected network host computers
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The Physicist’s View: Basic Experiment

e Basic “experiment”
- Select a source and destination
- Run traceroute tool

e Example

- Run traceroute from my machine in Florham Park,
NJ, USA to maths.adelaide.edu.au
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Running “traceroute maths.adelaide.edu.au” from NJ

1 135.207.176.3 1 ms 1 ms 1 ms

© 00 N O O &~ W N

[EEN
o

11
12
13
14
15
16
17
18
19
20

21 gigabitethernetO.erl.adelaide.cpe.aarnet.net.au (202.158.199.245) 259 ms 255 ms 258 ms

22
23
24
25
26

fp-core.research.att.com (135.207.3.1) 1ms 1 ms 1 ms
ngx19.research.att.com (135.207.1.19) 1 ms Oms O ms
12.106.32.12 1 ms 1 ms Oms

12.119.12.73 2ms 2ms 2 ms

cr81.nw2nj.ip.att.net (12.122.105.114) 3ms 4 ms 3 ms
crl.n54ny.ip.att.net (12.122.105.29) 4 ms 4 ms 3 ms
n54ny0ijt.ip.att.net (12.122.81.57) 3ms 3ms 3 ms

* xe-2-2.r03.nycmny01.us.bb.gin.ntt.net (129.250.8.41) 4 ms *

ae-1.r21.nycmnyO1.us.bb.gin.ntt.net (129.250.2.220) 3 ms 3 ms 3 ms
as-0.r20.chcgil09.us.bb.gin.ntt.net (129.250.6.13) 27 ms 24 ms 25 ms
ae-0.r21.chcgil09.us.bb.gin.ntt.net (129.250.3.98) 24 ms 24 ms 24 ms
as-5.r20.snjsca04.us.bb.gin.ntt.net (129.250.3.77) 76 ms 80 ms 76 ms
ae-1.r21.plalcaO1.us.bb.gin.ntt.net (129.250.5.32) 77 ms 85 ms 77 ms
po-3.r04.plalcaOl.us.bb.gin.ntt.net (129.250.2.218) 81 ms 81 ms 81 ms
140.174.28.138 80 ms 80 ms 77 ms

s0-3-3-1.bbl.a.syd.aarnet.net.au (202.158.194.173) 239 ms 237 ms 239 ms
ge-0-0-0.bbl.b.syd.aarnet.net.au (202.158.194.198) 235 ms 234 ms 235 ms
s0-2-0-0.bbl.a.mel.aarnet.net.au (202.158.194.33) 246 ms 250 ms 250 ms
s0-2-0-0.bbl.a.adl.aarnet.net.au (202.158.194.17) 254 ms 258 ms 258 ms

gwl.erl.adelaide.cpe.aarnet.net.au (202.158.199.250) 258 ms 255 ms 254 ms
pulteney-pix.border.net.adelaide.edu.au (192.43.227.18) 256 ms 283 ms 281 ms
129.127.254.237 260 ms 256 ms 256 ms

* Kk %

staff.maths.adelaide.edu.au (129.127.5.1) 263 ms 273 ms 255 ms
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The Physicist’s View (cont.)

 Available data: from large-scale traceroute experiments
- Pansiot and Grad (router-level, around 1995, France)
— Cheswick and Burch (mapping project 1997--, Bell-Labs)
- Mercator (router-level, around 1999, USC/ISI)
— Skitter (ongoing mapping project, CAIDA/UCSD)

- Rocketfuel (state-of-the-art router-level maps of
individual ISPs, UW Seattle)

- Dimes (ongoing EU project)
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http://research.lumeta.com/ches/map/
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http://www.isi.edu/scan/mercator/mercator.html
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http://www.caida.org/tools/measurement/skitter/
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Background image courtesy JHU. applied physics labs
http://www.cs.washington.edu/research/networking/rocketfuel/bb
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The Physicist’s View (cont.)

e |Inference

— Given: traceroute-based map (graph) of the router-
level Internet (Internet service provider)

- Wanted: Metric/statistics that characterizes the
inferred connectivity maps

- Main metric: Node degree distribution
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http://www.isi.edu/scan/mercator/mercator.html
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The Engineer’s View

e Measurement technique
— traceroute tool

— traceroute discovers compliant (i.e., IP) routers along
path between selected network host computers

- The reported IP addresses are not the routers’ IP
addresses, but the IP addresses of the routers’
interfaces (outgoing packet)
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Running “traceroute maths.adelaide.edu.au” from NJ

1 135.207.176.3 1 ms 1 ms 1 ms

© 00 N O O &~ W N

[EEN
o

11
12
13
14
15
16
17
18
19
20

21 gigabitethernetO.erl.adelaide.cpe.aarnet.net.au (202.158.199.245) 259 ms 255 ms 258 ms

22
23
24
25
26

fp-core.research.att.com (135.207.3.1) 1ms 1 ms 1 ms
ngx19.research.att.com (135.207.1.19) 1 ms Oms O ms
12.106.32.12 1 ms 1 ms Oms

12.119.12.73 2ms 2ms 2 ms

cr81.nw2nj.ip.att.net (12.122.105.114) 3ms 4 ms 3 ms
crl.n54ny.ip.att.net (12.122.105.29) 4 ms 4 ms 3 ms
n54ny0ijt.ip.att.net (12.122.81.57) 3ms 3ms 3 ms

* xe-2-2.r03.nycmny01.us.bb.gin.ntt.net (129.250.8.41) 4 ms *

ae-1.r21.nycmnyO1.us.bb.gin.ntt.net (129.250.2.220) 3 ms 3 ms 3 ms
as-0.r20.chcgil09.us.bb.gin.ntt.net (129.250.6.13) 27 ms 24 ms 25 ms
ae-0.r21.chcgil09.us.bb.gin.ntt.net (129.250.3.98) 24 ms 24 ms 24 ms
as-5.r20.snjsca04.us.bb.gin.ntt.net (129.250.3.77) 76 ms 80 ms 76 ms
ae-1.r21.plalcaO1.us.bb.gin.ntt.net (129.250.5.32) 77 ms 85 ms 77 ms
po-3.r04.plalcaOl.us.bb.gin.ntt.net (129.250.2.218) 81 ms 81 ms 81 ms
140.174.28.138 80 ms 80 ms 77 ms

s0-3-3-1.bbl.a.syd.aarnet.net.au (202.158.194.173) 239 ms 237 ms 239 ms
ge-0-0-0.bbl.b.syd.aarnet.net.au (202.158.194.198) 235 ms 234 ms 235 ms
s0-2-0-0.bbl.a.mel.aarnet.net.au (202.158.194.33) 246 ms 250 ms 250 ms
s0-2-0-0.bbl.a.adl.aarnet.net.au (202.158.194.17) 254 ms 258 ms 258 ms

gwl.erl.adelaide.cpe.aarnet.net.au (202.158.199.250) 258 ms 255 ms 254 ms
pulteney-pix.border.net.adelaide.edu.au (192.43.227.18) 256 ms 283 ms 281 ms
129.127.254.237 260 ms 256 ms 256 ms

* Kk %

staff.maths.adelaide.edu.au (129.127.5.1) 263 ms 273 ms 255 ms

117



e Router capacity is constrained by the number and speed of line

Cisco 12000 Series Routers

 Modular in design, creating flexibility in configuration.

cards inserted in each slot.

Chassis Rack size Slots Switchi_ng

Capacity
12416 Full 16 320 Gbps
12410 1/2 10 200 Gbps
12406 1/4 6 120 Gbps
12404 1/8 4 80 Gbps

Source: www.cisco.com
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The Engineer’s View: traceroute tool

e Basic “experiment”

- Run traceroute tool

- Select a source and destination
e Example

- Run traceroute from my machine in Florham Park,
NJ, USA to maths.adelaide.edu.au
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Running “traceroute maths.adelaide.edu.au” from NJ

1 135.207.176.3 1 ms 1 ms 1 ms

© 00 N O O &~ W N

[EEN
o

11
12
13
14
15
16
17
18
19
20

21 gigabitethernetO.erl.adelaide.cpe.aarnet.net.au (202.158.199.245) 259 ms 255 ms 258 ms

22
23
24
25
26

fp-core.research.att.com (135.207.3.1) 1ms 1 ms 1 ms
ngx19.research.att.com (135.207.1.19) 1 ms Oms O ms
12.106.32.12 1 ms 1 ms Oms

12.119.12.73 2ms 2ms 2 ms

cr81.nw2nj.ip.att.net (12.122.105.114) 3ms 4 ms 3 ms
crl.n54ny.ip.att.net (12.122.105.29) 4 ms 4 ms 3 ms
n54ny0ijt.ip.att.net (12.122.81.57) 3ms 3ms 3 ms

* xe-2-2.r03.nycmny01.us.bb.gin.ntt.net (129.250.8.41) 4 ms *

ae-1.r21.nycmnyO1.us.bb.gin.ntt.net (129.250.2.220) 3 ms 3 ms 3 ms
as-0.r20.chcgil09.us.bb.gin.ntt.net (129.250.6.13) 27 ms 24 ms 25 ms
ae-0.r21.chcgil09.us.bb.gin.ntt.net (129.250.3.98) 24 ms 24 ms 24 ms
as-5.r20.snjsca04.us.bb.gin.ntt.net (129.250.3.77) 76 ms 80 ms 76 ms
ae-1.r21.plalcaO1.us.bb.gin.ntt.net (129.250.5.32) 77 ms 85 ms 77 ms
po-3.r04.plalcaOl.us.bb.gin.ntt.net (129.250.2.218) 81 ms 81 ms 81 ms
140.174.28.138 80 ms 80 ms 77 ms

s0-3-3-1.bbl.a.syd.aarnet.net.au (202.158.194.173) 239 ms 237 ms 239 ms
ge-0-0-0.bbl.b.syd.aarnet.net.au (202.158.194.198) 235 ms 234 ms 235 ms
s0-2-0-0.bbl.a.mel.aarnet.net.au (202.158.194.33) 246 ms 250 ms 250 ms
s0-2-0-0.bbl.a.adl.aarnet.net.au (202.158.194.17) 254 ms 258 ms 258 ms

gwl.erl.adelaide.cpe.aarnet.net.au (202.158.199.250) 258 ms 255 ms 254 ms
pulteney-pix.border.net.adelaide.edu.au (192.43.227.18) 256 ms 283 ms 281 ms
129.127.254.237 260 ms 256 ms 256 ms

* Kk %

staff.maths.adelaide.edu.au (129.127.5.1) 263 ms 273 ms 255 ms
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The Engineer’s View (cont.)

* traceroute is strictly about IP-level connectivity
— Originally developed by Van Jacobson (1988)
- Designed to trace out the route to a host

e Using traceroute to map the router-level topology
- Engineering hack

- Example of what we can measure, not what we want to
measure!

e Basic problem #1.: IP alias resolution problem
- How to map interface IP addresses to IP routers
— Largely ignored or badly dealt with in the past
- New efforts in 2008 for better heuristics ...
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o

Interfaces 1 and 2 belong to the same router
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IP Alias Resolution Problem for Abilene (thanks to Adam Bender)
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The Engineer’s View (cont.)

* traceroute is strictly about IP-level connectivity
e Basic problem #2: Layer-2 technologies (e.g., MPLS, ATM)

- MPLS is an example of a circuit technology that hides the
network’s physical infrastructure from IP

- Sending traceroutes through an opaque Layer-2 cloud results
in the “discovery” of high-degree nodes, which are simply an
artifact of an imperfect measurement technique.

— This problem has been largely ignored in all large-scale
traceroute experiments to date.
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http://www.caida.org/tools/measurement/skitter/
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= www.sawvis.net

= managed IP and
hosting company

= founded 1995

= offering “private IP
with ATM at core”

This “node” is an
entire network!
(not just a router)

http://www.caida.org/tools/measurement/skitter/
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The Engineer’s View (cont.)

* The irony of traceroute measurements

— The high-degree nodes in the middle of the network that
traceroute reveals are not for real ...

- If there are high-degree nodes in the network, they can
only exist at the edge of the network where they will never
be revealed by generic traceroute-based experiments ...

e Additional sources of errors
- Bias in (mathematical abstraction of) traceroute
- Has been a major focus within CS/Networking literature
- Non-issue in the presence of above-mentioned problems
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The Engineer’s View on Traceroute measurements

e Bottom line

- (Current) traceroute measurements are of little use for
inferring router-level connectivity

— It is unlikely that future traceroute measurements will be
more useful for the purpose of router-level inference

 Lessons learned
- Key question: Can you trust the available data?
— Critical role of Data Hygiene in the Petabyte Age
— Corollary: Petabytes of garbage = garbage
— Data hygiene is often viewed as “dirty/unglamorous” work
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Revisiting the 1998 Pansiot and Grad paper

 The purpose for performing their traceroute
measurements is explicitly stated
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rooted in different sources in the same graph very different
7 In the following, we are interested in sparse groups, that
is groups where the average distance between members is
high, and with membership ranging up to a few thousands.

the structure of our graph. In Section 3, we compare
different types of multicast trees such as source rooied
shortest path trees (SPT) or shared trees (ST), in terms of
scalability. We compare for example the average delay,

Reference: J.-J. Pansiot and D. Grad, 1998. On routes and multicast trees
in the Internet. Computer Communication Review 28 (1), page 41.




Revisiting the 1998 Pansiot and Grad paper

* The main problems with the traceroute measurements
are explicitly mentioned (IP alias resolution and Layer-2
technology)
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Tracercowte basically produces the list of I'P addresses (and
when this is possible, domain names) of routers along the
route. For leaves of the graph ((that is sources and
destinations), we considered only nodes whose domain
name was known. However for intermediate nodes, we also
kept nodes known only by their IP address. In practice,
over more than 10 000 different TP addresses, more than
1000 (10%) remained anonymous (failure of the inverse
DINS guery). A more serious problem is to determine if two
identifiers {(name or address) correspond to the same node
or not. One may assume that if two different addresses
hawve the same name, they correspond to the same node (via
different interfaces). Unfortunately, the converse is not
true, two different names (such as border2-hssil-
O.chicago.mci.net and border2-fddi-0.chicago.mci.net)
may correspond to two different interfaces of the same
host. Worse, for two different addresses, one cannot tell a
priori if they correspond to the same host.

In theory, a solution could be to guery all addresses using
S5MNMP to discover the address of other interfaces. In
practice this is not generally feasible, in particular because
routers do not permit SNMP access from everywhere. We
hawve adopted a partial solution., based on the fact that when
a router sends an ICMP message [Pos81b], it generally
uses as spurce address the address of the emitting interface,
rather than the address of the interface where the original
packet arrived. Therefore, we hawve sent an UDP packet
with an unused port number (same principle as frraceroufre)
to all TP addresses obtained by tracerowte.

We then wverified if the source address of the ICMP Port
Unreachable message (say A) was the same as the
destination address of the TTDFP packet {(say B). If this is not
the case, A and B are two addresses of the same node. MNote
that this is likely to occour since we trace routes using
source routing. In the above example, A is the interface of
the normal route to the router, whereas B is the incoming
interface of a source route. With this method around 200
synonyms {(different addresses of the same host) were
found. Obviously this method is not perfect, and in our
resulting graph, some apparently different nodes are
actually the samme.

Reference: J.-J. Pansiot

and D. Grad, 1998. On
routes and multicast trees
in the Internet. Computer

Communication Review
28 (1), page 43.
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If we look back at our original data, containing all routes
before destination selection (see 1.2), we find nodes with

higher degrees: 45 (node connected to the German
academic X25 network Win) and 37 (node connected to
the English academic SMDS network Janet). These
networks use IP over a switched circuit technology. All
routers connected to such networks are potential direct
neighbors at the IP level. Therefore there is almost no limit
on the degree of a node even if the number of physical
interfaces is limited. This phenomenon may become even
more common with the widespread use of ATM networks
in large network backbones. More generally graph edges
may correspond to:

e a point to point link between two nodes

* a link within a broadcast network, such an Ethernet or
Fddi LAN. Note that these LANs may be found not
only on user's sites, but also within backbones for
router interconnection.

» a link within a non broadcast multiple access (NBMA)
network, such as X25, SMDS, Frame relay or ATM. It
could be also a pure switched circuit network such as
the phone network.

Reference: J.-J. Pansiot

and D. Grad, 1998. On

routes and multicast trees
in the Internet. Computer

Communication Review
28 (1), pages 45/46.
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Revisiting the 1998 Pansiot and Grad paper

e The Pansiot and Grad paper is an early textbook
example for what information a measurement paper
should provide.
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Revisiting the 1998 Pansiot and Grad paper

e Unfortunately, subsequent papers in this area have
completely ignored the essential details provided by
Pansiot and Grad and ultimately don’t even cite this

work anymore!
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Although we focus on the Internet topology at the inter-
domain level, we also examine an instance at the router

Reference: M. Faloutsos, P. Faloutsos, and C. Faloutsos, 1999. On power-law
relationships in the Internet topology. Proc. ASM Sigcomm ’99, Computer
Communication Review 29 (4), p. 253.




The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development™™. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution Pk,
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average (k) and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdds and Renyi™" and the small-world
model of Watts and Strogatz", both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k=1{k). In contrast, results on the World-Wide Web
(WWW )™, the Internet® and other large networks' " indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is P(k)~—k~7, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (& 3 (k)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

Reference: R. Albert, H. Jeong, A.-L. Barabasi, 2000. The Internet’s Achilles’
heel: Error and attack tolerance of complex networks. Nature 406, 378—382.




Faloutsos et al.® investigated the topological properties of the
Internet at the router and inter-domain level, finding that the
connectivity distribution follows a power-law, P(kj—k~**. Conse-
quently, we expect that it should display the error tolerance and
attack vulnerability predicted by our study. To test this, we used the
latest survey of the Internet topology, giving the network at the
inter-domain (autonomaous system) level. Indeed, we find that the
diameter of the Internet is unatfected by the random removal of
as high as 2.5% of the nodes (an order of magnitude larger than
the failure rate (0.33%) of the Internet routers™), whereas if the
same percentage of the most connected nodes are eliminated
(attack), d more than triples ( Fig. 2b). Similarly, the large connected
cluster persists for high rates of random node removal, but it nodes
are removed in the attack mode, the size of the fragments that
break off increases rapidly, the critical point appearing at ! = 0.03
(Fig. 3b).

Reference: R. Albert, H. Jeong, A.-L. Barabasi, 2000. The Internet’s Achilles’

heel: Error and attack tolerance of complex networks. Nature 406, 378—382.
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Example 2: Internet AS-level Connectivity

* Nodes
— Autonomous systems (ASes) or domains
e Links
— Business relationship between 2 ASes
e Customer-provider relationship
e Peer-to-peer relationship
* Sibling relationship
e Comments

— AS-level connectivity is “logical” or “virtual” in the
sense that it’'s about business relationships

— AS-level connectivity says little about physical
connectivity, except that two ASes that have an
established business relationship can also exchange
traffic on some physical link
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From Router-level to AS-level Connectivity




AS Graphs = Business Relationships

Nodes = ASes /_' m
Links = peering \"\ @

relationships ‘ ‘
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AS Graphs Obscure Physical Connectivity!
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The AS graph
may look like this. Reality may be closer to this...

Courtesy Tim Griffin
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AS-level Hierarchy

AT&T Tier-1
AS7018 AR

Tier-2 Tier-2 Tier-2 Tier-2
AS AS AS AS
Internet
Tier-3 Tier-3 Tier-3 Tier-3 Tier-3

Tier-4 Tier-4 Tier-4 Tier-4




Provider

Customer

Tier-2
AS

Tier-3

Tier-4

Customer-Provider Links

Tier-1

Tier-2 Tier-2
AS AS
Internet
Tier-3 Tier-3 Tier-3

Tier-4

Tier-4

Tier-2

Tier-4

AS

Tier-3




Peer-to-Peer Link

AT&T Tier-1
AS7018 AR

Peer & p2p Peer

Tier-2 Tier-2 Tier-2 Tier-2
AS AS AS AS
Internet
Tier-3 Tier-3 Tier-3 Tier-3 Tier-3

Tier-4 Tier-4 Tier-4 Tier-4




On Measuring AS-level Connectivity

e Basic problem

- Individual ASes know their (local) AS-level
connections

— AS-specific connectivity data is not publicly available
— AS-level connectivity cannot be measured directly
e Main Reasons
- AS-level data are considered proprietary
- Fear of loosing competitive advantage
- No central agency exists that collects this data
— No tool exists to measure AS connectivity directly
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On Measuring AS-level Connectivity (cont.)

* Generic approach to overcome basic problem
— ldentify and collect appropriate “surrogate” data
- Surrogate data should be publicly available/obtainable
— May require substantial efforts to collect surrogate data

- What does the surrogate data really say about AS-level
connectivity?

* Practical solution
- Rely on BGP, the de facto inter-domain routing protocol
— Use BGP RIBs (routing information base)
- RIBs contain routing information maintained by the router
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Measurements: BGP RIBs
* Typical BGP RIB table entry

NEXT_HOP: 194.85.4.55

COMMUNITIES: 3277:13062 3277:65301
3277:65307 20764:3000
20764:3011 20764:3020
20764:3022

PREFIX : 4.21.252.0/23

FROM: 194.85.4. 55 AS327T

TIME: : 2004 —-12—-31 20:07:56
TYFPE: NSG_TABLE_DUNMP/AFI_IP
WVIEW : 0 SEQUENCE: 440
STATUS: 1

ORIGINATED:  Fri Dec 31 06:26:51 2004

* Typical Routing table size
- About 200K entries or 100MB
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BGP Measurements for AS-level Connectivity

* Daily BGP tables/updates are collected as part of ongoing
projects from multiple routers across the Internet

- RouteViews (Univ. of Oregon)
- RIPE RIS (Europe)
 On using BGP data to map the Internet AS-level topology

- Engineering hack - the role of BGP is not to obtain
connectivity information

- Another example of what we can measure, not what
we want to measure!
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The Physicist’s View of BGP Measurements

Easy to download publicly available BGP datasets
Take the data at “face value”

Easy to reconstruct a graph (often already provided,
courtesy of your friendly networking researchers)

Resulting graph is taken to represent the Internet’s AS-
level connectivity (“ground truth”)

Blame the networking community, because it has done
little in the past to dispel this impression ....
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The Engineer’s View of BGP Measurements

* Key observation
- BGP is a mechanism by which ASes distribute
connectivity information

- BGP is a protocol by which ASes distribute the
reachability of their networks via a set of routing paths
that have been chosen by other ASes in accordance with

their policies.
* Main challenge
- BGP measurements are an example of “surrogate” data

— Using this “surrogate” data to obtain accurate AS-level
connectivity information is notoriously hard

- Examining the hygiene of BGP measurements requires
significant commitment and domain knowledge
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The Engineer’s View of BGP Measurements (cont.)

e Basic problem #1: Incompleteness

- Many peering links/relationships are not visible from the
current set of BGP monitors

— An estimated 40-50% of peer-to-peer links are missing,
most of them in the lower tiers

e Basic problem #2: Ambiguity

— Need heuristics to infer “meaning” of AS links: customer-
provider, peer-to-peer, sibling, and a few others

— Existing heuristics are known to be inaccurate
- Renewed recent efforts to develop better heuristics ...
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The Engineer’s View of BGP Measurements (cont.)

e The dilemma with current BGP measurements

- Parts of the available data seem accurate and solid (i.e.,
customer-provider links, nodes)

— Parts of the available data are highly problematic and
incomplete (i.e., peer-to-peer links)

e Bottom line

- (Current) BGP-based measurements are of questionable
guality for accurately inferring AS-level connectivity

- It is expected that future BGP-based measurements will be
more useful for the purpose of AS-level inference

- Very difficult to get to the “ground truth”
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Traceroute Measurements for AS-level Connectivity

 Ongoing projects
— Archipelago (Ark, previously Skitter), CAIDA
- Dimes (EU project)

* Unsolved problems

- Problem #1: Mapping interface |IP addresses to
routers (IP alias resolution problem)

- Problem #2: Mapping routers to ASes
 Bottom line

- Without novel solutions to problems #1 and #2,
current traceroute-based measurements are of very
guestionable quality for accurately inferring AS-level
connectivity

159



Other Measurements for AS-level Connectivity

e QOther available sources
- Public databases (WHOIS)
- Internet Routing Registry IRR)
e Main problems
- Voluntary efforts to populate the databases
- |Inaccurate, stale, incomplete information
 Bottom line

- These databases are of insufficient quality to even
approximately infer AS-level connectivity
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Internet Connectivity: Layer 3 (Internet Eco-system)

Nodes

- Company/business (e.g., ISP, Content provider, CDN,
large enterprise, educational institution)

Links
— Business relationship between two companies
— Derived from existing AS relationships
Comments
— Build on top of the AS-level connectivity
- Each company consists of at least one AS

— Large companies consist of many different ASes and
use them to implement their business model (e.g.,
AT&T has about 20-30 ASes, main one is 7018)

Has not been studied (no measurements)
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Internet Connectivity: Application Layer (Web)

* Nodes
— Static html pages
e Links
- Hyperlinks
e Comments
- Huge (directed) graph

— Connedctivity in the Web graph says nothing about the
underlying physical connectivity of the Internet

- Key factors: User behavior, socio-economic
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(Part of the) Web Graph
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Nodes = documents, connettions ="ﬁyper|inks
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Graph structure in the web
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Internet Connectivity: Application Layer (P2P)

* Nodes

— Users of a peer-to-peer network

- Examples: Gnutella (peers, super peers), BitTorrent
e Links

— Communication between 2 P2P users
e Comments

- Different P2P systems yield different connectivity
structures

— Connectivity in a P2P graph says nothing about the
underlying physical connectivity of the Internet

- Key factors: User behavior, socio-economic

165



On Measuring Overlay Connectivity Structures

e World-Wide-Web (WWW)
- AltaVista crawls (Broder et al,) in 1999
- Duration is a couple of weeks
- Google ...
e P2P networks
— Structured (e.g., Kad DHT): Central control
— Unstructured (e.g., Gnutella): Crawler
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HOWEVER: Problems with existing measurements

* High degree of dynamics of overlay networks
— Connectivity structure changes underneath the crawler
- Fast vs. slow crawls
 Enormous size of overlay networks
- Complete crawls take too long
- Partial crawls produce biased samples
- Promising alternative: Sampling
* |ssues with sampling
- Bias due to temporal dynamics of nodes (peers)
- Bias due to spatial features of overlay network
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Internet Connectivity: Application Layer (OSN)

* Nodes
— Users of an Online Social Network (OSN)
- Examples: Facebook, MySpace, Flickr, Twitter
e Links
- Friendship relationship
- Interaction
e Comments
- Different OSNs yield different connectivity structures

— Connedctivity in an OSN says nothing about the
underlying physical connectivity of the Internet

- Key factors: User behavior, socio-economic
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Online Social Networks (OSNSs)

e Examples of some of the more popular OSNs
- Facebook
- MySpace
- YouTube
- LiveJournal
- LinkedlIn
- Flickr
e Typical user activity in OSNs
- Listing “friends”, joining “groups”
- Send messages, post photos and “notes”
- Post on friends’ walls
- Update profiles, advertise events
- Subscribe to “feeds”

169



Particular example of an OSN: Facebook

e Some numbers for Facebook
- Launched in 2004, open to all since Sept. 2006
— About 150M users
— About 300K new users per day
— Typical usage: about 20 min/day per user
e More numbers for Facebook (as of Oct. 2008)
- Hosts 10 billion photos
- Each photo is stored in 4 sizes: 40 billion files
- 2-3 TB of photos are being uploaded to the site each day
- Photo traffic peaks at over 300,000 images per second
- Has just over 1 PB of photo storage
— As of early '08: 10,000 servers worldwide and growing
— Uses CDNs
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OSN measurements

* Provided by your friendly OSN owner
- 1 known instance: Cyworld (South Korea)
— About 20 million users (more than 1/3 of SK)
- 2 years of (anonymized) guestbook logs
* Not-so-friendly OSN owners (typical case)
— OSN supports well-defined API (e.g. Flickr)
e Crawling
e A few OSNs allow unrestricted crawling
e Most OSNs impose rate limit on #queries
— OSN does not support well-defined API (e.g., Facebook)
e Parsing/scrubbing html files
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OSN measurements revisited (1)

* Most available measurements are crawler-based
- Need OSN-specific crawlers: One per supported API
- Wanted: General-purpose crawler
e Difficulties with crawling OSNs
- Completely unknown strucuture
- Full crawl takes too long because ...
e Some OSNs are huge
* Most rate limit #queries
- Partial crawl takes less time, but ...
* When should you stop? (bias)
 What do you miss? (representativeness)
 Promising alternative: Sampling
- Initial results, many open problems
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OSN measurements revisited (2)

e OSNs

- OSN owners have no incentives to actively support
third-party crawlers

- How to design crawlers to explore a completely
unknown structure?

e Problem #1: Dynamics
— OSNs are believed to be highly dynamic
— The structure is changing underneath the crawler

- How to accurately and efficiently crawl an evolving
structure?
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OSN measurements revisited (3)

e OSNs

- OSN owners have no incentives to actively support
third-party crawlers

- How to design crawlers to explore a completely
unknown structure?

* Problem #2: Quality of crawler-based data
- Bias?
- Representativeness?
- Completeness?
— Ambiguities?
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OSN measurements revisited (4)

e The problem with current OSN measurements
- Most of the available OSN measurements are of unknown quality
- Some of the available data is informative/useful
— Deciding which parts of the data are useful is non-trivial
Typical use of OSN measurements in Network Science literature
- The data is used as if it represents the “ground truth”

- Main object of interest: friendship graph (may turn out to be the least
interesting/relevant aspect of OSNSs)

— Completely ignores dynamic aspects of OSNs
* The engineer’s/social scientist’s view

— Challenge #1: How to get to the “ground truth”?

— Challenge #2: Study of the “active” part of the friendship graph
— Challenge #3: How to deal with the dynamic nature of OSNs?
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Main lesson: There is no free lunch!

e Know your data!

- Internet data typically reflect what we can measure rather
than what we would like to measure

— Determining if the measured data can be used to make
solid statements about the Internet involves hard work

* Practice data hygiene!

— Beware of layers, protocols, feedback loops, technology,
economics, social behavior, etc.

- Details do matter and domain knowledge is critical

- Useful data via engineering hacks that may or may not be
obvious to non-experts
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