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Today’s Agenda

• The case of high-quality Internet data (traffic)

• The case of low-quality Internet data (connectivity)

– More “normal” than Normal: De-mystifying power-laws

– How to make everything look like a power-law

• Internet modeling

– Beyond traditional approaches

– From data-fitting to reverse-engineering

• An engineering perspective to modeling highly engineered 

systems

– Recognize the limitations of the available data

– Recognize the power of domain knowledge

– Model validation and reverse-engineering



Analysis of Internet Data: Know your Statistics!

Analyzing High-Quality Internet Data

February 23, 2010
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Internet Traffic Measurements: Fact 1

• Early example of measurement-driven Internet research

– What does real Internet traffic look like?

– Answer: Go and measure the traffic!

• Traffic data collection

– Need special-purpose hardware

– Enormous efforts to check quality of measurements

– “Measuring the measurer”

• Implications

– Can get as much high-quality data as one wants 

– Limited by data storage, processing, and analysis 

capabilities
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Internet Traffic Measurements: Fact 2

• High-quality data sets

– The collection hardware/software has been 
extensively tested

• High-volume data sets

– Individual data sets are huge

– Huge number of different data sets

– Even more and different data in the future

• Rich semantic content

– Each measurement contains lots of information

– IP packet: more than just arrival time and size

– IP flow: rich source of information

– User session: more than arrival time and duration
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Internet Traffic Measurements: Fact 3

• High variability everywhere you look

– Link bandwidth: Kbps – Gbps

– File sizes: a few bytes – Mega/Gigabytes

– Flows: a few packets – 100,000+ packets

– Delay: Milliseconds – seconds and beyond  

– etc.

• Statistical dilemma

– High variability: Large, but finite variance?

– High variability: Infinite variance as mathematical 
abstraction
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On Traditional Analysis of Internet Traffic Data

• Step 0: Datasets

– One or more sets of comparable measurements

• Step 1: Model Selection (distribution)

– Choose parametric family of models/distributions

• Step 2: Parameter Estimation

– Take a strictly static view of data

– Assume moment estimates exist/converge

• Step 3: Model Validation

– Select “best-fitting” model

– Rely on some “goodness-of-fit” criteria/metrics

– Rely on some performance comparison

“Black box-type” analysis, “data-fitting” exercise
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Some Illustrative Examples

• Some commonly-used plotting techniques

– Probability density functions (pdf)

– Cumulative distribution functions (CDF)

– Complementary CDF (CCDF)

• Different plots emphasize different features

– Main body of the distribution vs. tail

– Variability vs. concentration

– Uni- vs. multi-modal
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Probability density functions
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Cumulative Distribution Function
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Complementary CDFs
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Complementary CDFs
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By Example

Internet Traffic

• HTTP Connection Sizes from 1996

• IP Flow Sizes (2001)
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HTTP Connection Sizes (1996)

– 1 day of LBL’s WAN traffic (in- and outbound)

– About 250,000 HTTP connection sizes (bytes)

– Courtesy of  Vern Paxson
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How to deal with “high variability”?

– Option 1: High variability = large, but finite variance

– Option 2: High variability = infinite variance
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IP flow
10

0
10

5
10

10

10
-6

10
-4

10
-2

10
0

x (IP Flow Size)

1
-F

(x
)

IP flow data

– 4-day period of traffic at Auckland

– About 800,000 IP flow sizes (bytes)

– Courtesy of  NLANR and Joel Summers

IP Flow Sizes (2001)
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IP flow
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How to deal with “high variability”?

– Option 1: High variability = large, but finite variance

– Option 2: High variability = infinite variance

IP Flow Sizes (2001)
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Traditional Modeling Approach

• Step 0: Datasets

• Step 1: Model Selection

• Step 2: Parameter Estimation

• Step 3: Model Validation

Criticism of Traditional Approach

• Highly predictable outcome

– Always doable, no surprises

– Cause for endless discussions (Downey’01)

• Curve fitting or data-fitting exercise

– “more”  always means “better” …

– Adding parameters improves fit

• Inadequate “goodness-of-fit” criteria due to

– Voluminous data sets

– Dependencies, high-variability, non-stationarities
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Beyond Traditional Internet Modeling

• Requirement 1: Internal Model Consistency

– Exploit high volume of available data

– Learn from Mandelbrot and Tukey

– Example: HTTP and IP traffic data

• Requirement 2: External Model Consistency

– Exploit rich semantic of available data

– Learn more from Mandelbrot and Cox

– Example: Internet traffic

• Requirement 3: Resilience to Ambiguous Data

– High quality vs low quality

– High variability vs low variability

– Example: Internet connectivity
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• Reflects the fact that the size of any given dataset could 
really be anything (why 1 hour? 1 day? 10 min?)

• Take dynamic view of data

– Rely on traditional modeling approach for initial (small) 
subset of available data (model M(0))

– Consider successively larger subsets (models M(k))

– Analyze resulting family of models M(0),…,M(n)

• Approach: Tukey’s “borrowing strength” idea

– Borrowing strength from large data sets

– Simple way to exploit high-volume data sets

– Traditional modeling as a means, not as an end in 
itself

Internal Model Consistency
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• Internally consistent family of models

– Parameter estimates converge quickly/robustly

– 95% Confidence intervals become nested

• Internally inconsistent family of models

– Parameter estimates don’t converge

– 95% CI’s don’t overlap

– “Patchwork of fixes”

Internal Model Consistency (cont.)
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• Lognormal model assumes finite variance

• Tool: Mandelbrot’s “sequential moment plots”

– Plot moment estimates as a function of n

– Plot corresponding 95% CI as a function of n

– Look for convergence/divergence as n approaches the 

full sample size

• Practical implementation

– Working with raw data

– Working with transformations of raw data

– Working with random permutation of transformations 

of raw data

Illustration: Lognormal Family of Models for HTTP Data
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• Let D be original data set of size N

• Build sequential models M0, M1,…, MN using nested data sets: D0 D1

… D of size N0 < N1 < … < N

• Plot sample STD as a function of n (sample size)

Sequential Moment Plots: Raw Data
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• Let D be original data set of size N

• Build sequential models M0, M1,…, MN using nested data sets: D0 D1

… D of size N0 < N1 < … < N

• Plot sample STD as a function of n
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• Let D be original data set of size N

• Build sequential models M0, M1,…, MN using nested data sets: D0 D1
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• Plot sample STD as a function of n



30

0 0.5 1 1.5 2 2.5

x 10
5

0

2

4

6

8

10
x 10

4

n (Number of Observations)

S
T

D
(n

)

HTTP data (original)
HTTP data (permuation)
LogNormal
Pareto

Sequential Moment Plots: Raw Data

• Let D be original data set of size N

• Build sequential models M0, M1,…, MN using nested data sets: D0 D1

… D of size N0 < N1 < … < N

• Plot sample STD as a function of n
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• Let D be original data set of size N

• Build sequential models M0, M1,…, MN using nested data sets: D0 D1

… D of size N0 < N1 < … < N

• Plot sample STD as a function of n
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Focus on the (n) parameter of the fitted lognormal model M(n)

– Behavior as its estimate as a function of n
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inconsistent (non-overlapping CIs)
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The Case against the Lognormal Family of Models for HTTP Data

• The lognormal model assumes

– existence/convergence of 2nd moment

– parameter estimates converge

• However, sequential moment plot indicates

– non-existence/divergence of 2nd moment 

• However, sequential parameter estimate plot indicates

– inherently  inconsistent parameter estimates

• “Patchwork of fixes” (Mandelbrot)

Example of being  “certifiably wrong”
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Illustration: Pareto Family of Models for HTTP Data

• Pareto model assumes infinite variance, but is defined in 

terms of tail index 

• Tool: “Sequential tail index estimate plots”

– Plot tail index estimates as a function of n

– Plot corresponding 95% CI as a function of n

– Look for convergence/divergence as n approaches the full 

sample size

• Practical implementation

– Working with raw data

– Working with random permutation of raw data
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Random permutation of raw data

HTTP: Sequential Tail Index Estimate Plots
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HTTP: Sequential Tail Index Estimate Plots
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• The Pareto model assumes
– 2nd moment estimates are infinite/diverge
– Tail index estimates converge

• Sequential moment plot indicates
– 2nd moments are infinite/diverge

• Sequential parameter estimate plot indicates
– Inherently consistent estimates

• The “creativity” of power-law distributions
– In theory: Infinite moments
– In practice: Divergent sequential moment plots

• Scientifically “economical” modeling 
– When more data doesn’t mean more parameters
– More data simply means more accurate estimates
– “Parsimonious” modeling
– Trading “goodness-of-fit” for “robustness”

The Case for the Pareto Family of Models for HTTP Data

Example of being  “approximately right”
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Some Sanity Checks

• Fitting Pareto model to Lognormal sample

– Generate iid sample from a Lognormal model

– Check sequential tail index estimate plot
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Some Sanity Checks

• Fitting Pareto model to Lognormal sample

– Generate iid sample from a Lognormal model

– Check sequential tail index estimate plot

• Result: sequential tail index estimates diverge

• Fitting Lognormal model to Pareto sample

– Generate iid sample from a Pareto model

– Check normal probability plot
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Some Sanity Checks

• Fitting Pareto model to Lognormal sample

– Generate iid sample from a Lognormal model

– Check sequential tail index estimate plot

• Result: sequential tail index estimates diverge 

• Fitting Lognormal model to Pareto sample

– Generate iid sample from a Pareto model

– Check sequential standard deviation plot

– Check normal probability plot

• Result: transformed data is not Gaussian
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Recap: Internal Model Consistency

• Relies on traditional modeling approach

• Simple way to exploit high-volume data sets

• Can be used to check underlying assumptions

– Independent observations

– Stationarity

• Applicable beyond distributions

– Stochastic processes

– Random graph structures

– Spatio-temporal processes
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A Word of Wisdom …

In my view, even if an accumulation of quick 

“fixes”were to yield an adequately fitting 

“patchwork”, it would bring no understanding.

– B.B. Mandelbrot, 1997
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The Internet Traffic Story: Part 1

• Early example of measurement-driven Internet research

– What does real Internet traffic look like?

– Answer: Go and measure the traffic!

• Traffic data collection

– Need special-purpose hardware

– Enormous efforts to check quality of measurements

– “Measuring the measurer”

• Implications

– Can get as much high-quality data as one wants 

– Limited by data storage, processing, and analysis 

capabilities
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The Internet Traffic Story: Part 2

• Modeling

– So many models, so little insight …

– How to separate the wheat from the chaff?

• There must be more to modeling than data-fitting

– Modeling is easy …

– Insist on models that account for the key structural 

features of network traffic (e.g., packets belong to flows, 

connections, sessions)

• Aim for external model consistency …
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External Model Consistency: Traffic
• Cross-layer view of models

– Model for aggregate link traffic (packet-level)

– Semantic content in packet trace data allows for 
identification of higher-layer constituents [IP flow, 
TCP connections, HTTP requests/responses, etc.]

– Model for aggregate link traffic (higher-layer 
constituents)

• External model consistency

– Models should respect the layered network 
architecture

– Models should be consistent across layers

– Models should explain observed phenomena at 
different layers
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Layered Architecture of the Internet

Applications

TCP

IP

Transmission

WWW, Email, Napster, FTP, …

Ethernet, ATM, POS, WDM, …

“The Internet hourglass”
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On External Model Consistency

• Increased focus on explanatory modeling (as compared 

to descriptive modeling)

• Yields concrete examples for what is meant by a 

consistent, mathematically rigorous, networking-based, 

explanation with supporting measurements

• Resulting models tend to be non-generic but rely on 

domain-specific details

• Supporting/complementary measurements may not be 

easily available/accessible
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The Internet Traffic Story: Beyond Modeling

• Modeling validation

– “Good” models point to new types of measurements that 
can be collected.

– Use new measurements to check validity of proposed 
model (“closing-the-loop” argument) 

• Now that we have externally consistent traffic models …

– Features like self-similarity become a non-issue because 
we understand their root cause, i.e, heavy-tailed
flows/connections/sessions.

– Next obvious question: Why “heavy-tailed”? 

– One answer: Optimal web layout results in heavy-tailed 
HTTP data
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On “Closing the Loop”

1. Discovery (data-driven)

2. Modeling, subject to internal and external consistency

3. Proposed explanation in terms of elementary     

concepts or mechanisms (mathematics)

4. Step 3 suggests first-of-its-kind measurements or 

revisiting existing measurements related to checking 

the elementary concepts or mechanisms

5. Empirical validation of elementary concepts or 

mechanisms using the data collected in Step 4
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Why “Closing the Loop” is Progress

• Departure from classical “data-fitting”

• Validation is moved to a more elementary or 
fundamental level

• Fully exploits the context in which measurements are 
made (“start with data, end with data”)

• If successful, provides actual explanation of “emergent” 
phenomena (new insight)

• Shows inherent limitations and weaknesses of 
proposed model, suggests further improvements
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Recap: Internet Traffic Story

• By and large, this Internet traffic story has been 

unsuccessful in turning Internet modeling from an 

exercise in data fitting into an exercise in reverse-

engineering.

• Much of the past work on Internet topology modeling  

has followed the traditional modeling approach ….



Analysis of Internet Data: Know your Statistics!

Analyzing Low-Quality Internet Data

February 23, 2010
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Topics Covered

• Mathematics of heavy-tailed/power-law/scaling 

distributions

• De-mystifying power-laws

• The virtues of power-laws for low-quality but high-

variability data

• A word of caution
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A Working Definition

• A distribution function F(x) or random variable X is called 
heavy-tailed if for some >0

where c>0 and finite 

• F is also called a power law or scaling distribution

• The parameter is called the tail index

• 1< < 2, F has infinite variance, but finite mean

• 0 < < 1, the variance and mean of F are infinite

• “Mild” vs “wild” (Mandelbrot):  2 vs < 2 

xcxxFxXP ,)(1][
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Power laws are ubiquitous

• High variability phenomena abound in natural and man made 
systems

• Tremendous attention has been directed at whether or not such 
phenomena are evidence of universal properties underlying all 
complex systems

• Recently, discovering and explaining power law relationships has 
been a minor industry within the complex systems literature

• We will use the Internet as a case study to examine what power 
laws do or don’t have to say about its behavior and structure.

• Power laws: Full of sound and fury, signifying nothing? (Strogatz)

First, we review some basic properties about 
scaling distributions
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Power Laws

Note that (1) implies

• Scaling distributions are also called power law distributions.

• We will use notions of power laws, scaling distributions, and heavy tails 

interchangeably, requiring only that 

In other words, the CCDF when plotted on log-log scale follows an 

approximate straight line with slope - .
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Some Simple Constructions

• For U uniform in [0,1], set X=1/U

– X is heavy-tailed with =1

• For E (standard) exponential, set X=exp(E)

– X is heavy-tailed with =1

• The mixture of exponential distributions with parameter 
1/ having a (centered) Gamma(a,b) distribution is a 
Pareto distribution with =a

• The distribution of the time between consecutive visits 
of a symmetric random walk to zero is heavy-tailed with 

=1/2



76

Some Illustrative Examples

• Some commonly-used plotting techniques

– Probability density functions (pdf)

– Cumulative distribution functions (CDF)

– Complementary CDF (CCDF)

• Different plots emphasize different features

– Main body of the distribution vs. tail

– Variability vs. concentration

– Uni- vs. multi-modal
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Probability density functions
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Cumulative Distribution Function
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Complementary CDFs
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20th Century’s 100 largest disasters worldwide
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Why “Heavy Tails” Matter …

• Risk modeling (finance, insurance)

• Load balancing (CPU, network)

• Job scheduling (Web server design)

• Combinatorial search (Restart methods)

• Complex systems studies (SOC, phase transition 

phenomena)

• Understanding the Internet

– Behavior (traffic)

– Structure (connectivity)
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Observed/Claimed power law relationships

• Species within plant genera (Yule 1925)

• Mutants in bacterial populations (Luria and Delbrück 1943)

• Economics: income distributions, city populations (Simon 1955)

• Linguistics: word frequencies (Mandelbrot 1997)

• Forest fires (Malamud et al. 1998)

• Earthquakes

• Internet traffic: flow sizes, file sizes, web documents (Crovella and 

Bestavros 1997)

• Internet topology: node degrees in physical and virtual graphs 

(Faloutsos et al. 1999)

• Metabolic networks (Barabasi and Oltavi 2004)



84

Response to Conditioning

• If X is heavy-tailed with index , then the conditional distribution of 

X given that X > w satisfies

• The non-heavy-tailed exponential distribution has conditional 

distribution of the form

For large values, x is identical to the unconditional distribution P[ X

> x ], except for a change in scale.

The response to conditioning is a change in location, rather than a 

change in scale.
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• For a scaling distribution with parameter , mean residual lifetime 

is increasing

Mean Residual Lifetime

• An important feature that distinguishes heavy-tailed distributions 
from non-heavy-tailed counterparts

• For the exponential distribution with parameter , mean residual 
lifetime is constant
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Key Mathematical Properties 

of Scaling Distributions

• Response to conditioning - change in scale

• Mean residual lifetime - linearly increasing

Invariance Properties

• Invariant under aggregation

– Non-classical CLT and stable laws

• (Essentially) invariant under maximization

– Domain of attraction of Frechet distribution

• (Essentially) invariant under mixture

– Example: The largest disasters worldwide

• Invariant under marginalization
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Linear Aggregation: 

Classical Central Limit Theorem

• A well-known result

– X(1), X(2), … independent and identically distributed random 

variables with distribution function F

(mean < and variance 1)

– S(n) = X(1) + X(2) +…+ X(n) n-th partial sum

• More general formulations are possible

• Often-used argument for the ubiquity of the normal distribution
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Linear Aggregation: 

Non-classical Central Limit Theorem

• A less well-known result

– X(1), X(2), … independent and identically distributed with 
common distribution function F that is heavy-tailed with 1 < < 
2

– S(n) = X(1)+X(2)+…+X(n) n-th partial sum

• The limit distribution is heavy-tailed with index 

• More general formulations are possible

• Gaussian distribution is special case when = 2

• Rarely taught in most Stats/Probability courses
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Maximization:

Maximum Domain of Attraction

• A not so well-known result (extreme-value theory)

– X(1), X(2), … independent and identically distributed with 

common distribution function F that is heavy-tailed with 1 < < 2

– M(n) = max(X(1), …, X(n)), n-th successive maxima

• G is the Fréchet distribution exp(-x- )

• G is heavy-tailed with index 
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Characterizing “Mild” vs. “Wild”

• Aggregation and maximization

– X(1), X(2), … independent and identically distributed 

with common  distr. function F

– Aggregation:     S(n)=X(1)+X(2)+…+X(n)

– Maximization: M(n)=max{X(1),X(2),…,X(n)}

• Classical case (F is a ”mild” distribution)

–

• Non-classical case (F is a “wild” distribution)

–

nconstnSnM   as  ,)(/)(

   as ,lawlimit  )(/)( nnSnM
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Intuition for “Mild” vs. “Wild”

• The case of  “mild” distributions (e.g., const=0)

– “Evenness” – large values of S(n) occur as a 

consequence of many of the X(i)’s being large

– The contribution of each X(i), even of the largest, is 

negligible compared to the sum 

• The case of  “wild” distributions

– “Concentration” – large values of S(n) or M(n) occur 

as a consequence of a single large X(i)

– The largest X(i) is dominant compared to S(n) 
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Weighted Mixture

• A little known result

– X(1), X(2), … independent random variables having distribution 

functions Fi that are heavy-tailed with common index 1 < < 2, 

but possibly different scale coefficients ci

– Consider the weighted mixture W(n) of X(i)’s

– Let pi be the probability that W(n) = X(i), with p1+…+pn=1, then 

one can show

where cW = pi ci is the weighted average of the separate scale 

coefficients ci. 

• Thus, the weighted mixture of scaling distributions is also scaling 

with the same tail index, but a different scale coefficient
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Multivariate Case: Marginalization

• For a random vector X Rd, if all linear combinations    Y  = k bk Xk 

are stable with 1, then X is a stable vector in Rd with index . 

• Conversely, if X is an -stable random vector in Rd then any linear 

combination Y  = k bk Xk is an -stable random variable. 

• Marginalization

– The marginal distribution of a multivariate heavy-tailed random 

variable is also heavy tailed

– Consider convex combination denoted by multipliers         b = (0, 

…, 0, 1, 0, …, 0) that projects X onto the kth axis

– All stable laws (including the Gaussian) are invariant under this 

type of transformation
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Invariance Properties

Gaussian

Distributions

Scaling

Distributions

Aggregation Yes Yes

Maximization No Yes

Mixture No Yes

Marginalization Yes Yes

•For low variability data, minimal conditions on the 

distribution of individual constituents (i.e. finite variance) 

yields classical CLT

•For high variability data, more restrictive assumption (i.e. 

right tail of the distribution of the individual constituents 

must decay at a certain rate) yields greater invariance
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Scaling: “more normal than Normal”

• Aggregation, mixture, maximization, and marginalization are 

transformations that occur frequently in natural and engineered 

systems and are inherently part of many measured observations 

that are collected about them.

• Invariance properties suggest that the presence of scaling 

distributions in data obtained from complex natural or engineered 

systems should be considered the norm rather than the exception.

• Scaling distributions should not require “special” explanations.
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Our Perspective

• Gaussian distributions as the natural null hypothesis for low 

variability data 

– i.e. when variance estimates exist, are finite, and converge 

robustly to their theoretical value as the number of 

observations increases

• Scaling distributions as natural and parsimonious null hypothesis 

for high variability data

– i.e. when variance estimates tend to be ill-behaved and 

converge either very slowly or fail to converge all together as 

the size of the data set increases
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Resilience to Ambiguity

• Scaling distributions are robust under

– … aggregation, maximization, and mixture

– … differences in observing/reporting/accounting

– … varying environments, time periods

• The “value” of robustness

– Discoveries are easier/faster

– Properties can be established more accurately

– Findings are not sensitive to the details of the data 
gathering process
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On the Ubiquity of Heavy Tails

• Heavy-tailed distributions are attractors for averaging 
(e.g., non-classical CLT), but are the only distributions 
that are also (essentially) invariant under maximizing 
and mixing.

• Gaussians (“normal”) distributions are also attractors 
for averaging (e.g., classical CLT), but are not invariant 
under maximizing and mixing

• This makes heavy tails more ubiquitous than Gaussians, 
so no “special” explanations should be required …
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Looking ahead …

• Main objective of current empirical studies

“The observations are consistent with model/distribution X, but 

are not consistent with model/distribution Y.”

• Requirement for future empirical studies

“The observations are consistent with model/distribution X, and 

X is not sensitive to the methods of measuring and collecting 

the observations.”
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Some Words of Caution …

• Not every “straight-looking” log-log plot means “heavy 

tails”!

• Never use frequency plots to infer heavy tails – even 

though physicists do it all the time!
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Observation #3: If you want your data to exhibit a power 

law behavior, use size-frequency plots!
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Beyond Traditional Data Analysis

• Requirement 1: Internal Model Consistency

– Exploit high volume of available data

– Learn from Mandelbrot and Tukey

– Example: Understanding HTTP and IP data

• Requirement 2: External Model Consistency

– Exploit rich semantic of available data

– Learn more from Mandelbrot and Cox

– Example: Understanding self-similar Internet traffic

• Requirement 3: Resilience to Ambiguous Data

– High variability to the rescue

– Again, look up Mandelbrot

– Example: Understanding Internet topology data



Internet Modeling:

From Data-Fitting to Reverse-Engineering

February 23, 2010
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The Internet as a Case Study

• To the user, it creates the illusion of a simple, robust, 
homogeneous resource enabling endless varieties and 
types of technologies, physical infrastructures, virtual 
networks, and applications (heterogeneous).

• Its complexity is starting to approach that of simple 
biological systems

• Our understanding of the underlying technology together 
with the ability to perform detailed measurements means 
that most conjectures about its large-scale properties can 
be unambiguously resolved, though often not without 
substantial effort.
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Internet Topology as a Case Study

• How to make complex systems still complex but 

experimentally accessible?

• Importance/interpretation of high variability in complex 

systems – de-mystifying power-laws

• Modeling debate: design vs. randomness

• Understanding the “robust, yet fragile” aspects of the 

Internet

• “Closing the loop” between modeling and analysis
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Why Modeling Network Topology?

• Performance evaluation of protocols

• Provisioning

– Topology constrains the applications and services 
that run on top of it

• Understanding large-scale properties 

– Reliability and robustness to accidents, failures, and 
attacks on network components

• Insight into other network systems

– To the extent that the network model is “universal”

• Getting at the architecture of a system by understanding 
the various connectivity structures that are exposed
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State-of-the-art Topology Modeling

• Direct inspection generally not possible

– Measurement-driven research activity

• Recent trend

– Generative models follow empirical measurement 

studies

• But…

– So many things to measure

– Incredible variability in so many aspects

– How to determine what matters?

• Our main focus is on router-level topology
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Recap: What “Network Science” says about the Internet 

• Measurements

– Router-level: large-scale traceroute experiments

– AS-level: BGP-based, traceroute-based, WHOIS

– WWW: large-scale web crawling experiments

• Inference

– (Exclusive) focus on node degree distribution

– Inferred node degree distributions follow a power law

• Modeling

– Preferential attachment-type growth model

•Incremental growth

•Preferential attachment: p(k) degree of node k

– There exist many variants of this basic PA model
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Recap: What “Network Science” says about the Internet (cont)

• Key features of PA-type models

– Randomness enters via attachment mechanism

– Exhibit power law node degree distributions with or 

without exponential cutoffs

• Model validation

– The model “fits the data …”

– Reproduces observed node degree distribution

• Highly publicized claims about Internet topology

– High-degree nodes form a hub-like core

– Fragile/vulnerable to targeted node removal

– Achilles’ heel

– Zero epidemic threshold
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Basic Question

Do the available Internet-related connectivity

measurements and their analysis support the sort 

of claims that can be found in the  existing complex 

networks literature?

Short Answer:  No!

Long Answer:   No, because …

•Lack of data hygiene

•Lack of scientific hygiene (power-laws)

•Lack of critical model validation
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Recap: Part I (Know your data!)

• The currently available traceroute measurements are in 

general of insufficient quality little to make any 

scientifically sound inferences about the Internet’s 

router-level connectivity

• Main problems

– IP alias resolution problem (i.e., mapping IP router 

interfaces to the correct routers)

– Cannot trace through opaque Layer-2 clouds
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IP Alias Resolution Problem for Abilene (thanks to Adam Bender)
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Recap: Part I (Know your data!)

• The currently available traceroute measurements are in 

general of insufficient quality little to make any 

scientifically sound inferences about the Internet’s 

router-level connectivity

• Main problems

– IP alias resolution problem (i.e., mapping IP router 

interfaces to the correct routers)

– Cannot trace through opaque Layer-2 clouds

• Main implications

– The large node degrees are wrong

– The remaining node degrees are unreliable
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Recap: Part I (Know your data!)

• The currently available traceroute measurements are in 

general of insufficient quality little to make any 

scientifically sound inferences about the Internet’s 

router-level connectivity

• Main problems

– IP alias resolution problem (i.e., mapping IP router 

interfaces to the correct routers)

– Cannot trace through opaque Layer-2 clouds

• Main implications

– The large node degrees are wrong

– The remaining node degrees are unreliable

• Power-law claim for the router-level Internet

– (White) lie, damned lie



124

Recap: Part II (Know  your Statistics!)

• Even if the currently available traceroute measurements 

were of sufficient quality to be used for inferring the 

Internet’s router-level connectivity (but recall, this is 

really stretching things!) …

• Main problems

– The level of statistical analysis applied to conclude 

power-law behavior is dismal

– Dominated by techniques that “guarantee” power-

law behavior even if it doesn’t exist
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Recap: Part II (Know  your Statistics!)

• Even if the currently available traceroute measurements 

were of sufficient quality to be used for inferring the 

Internet’s router-level connectivity …

• Main problems

– The level of statistical analysis applied to conclude 

power-law behavior is dismal

– Dominated by techniques that “guarantee” power-

law behavior even if it doesn’t exist

• Power-law claim for the router-level Internet

– Textbook example of “how to lie with statistics …”
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Model Validation: A “hands-on” Approach

• Mathematical Modeling 101

– For one and the same observed phenomenon, there 

are usually many different explanations/models

– All models are wrong, but some are “really” wrong …

• Model validation ≠ data fitting

– The ability to reproduce a few graph statistics does not 

constitute “serious” model validation

– Which of the observed properties does a proposed 

model have to satisfy before it is deemed “valid”?

• What constitutes “serious” model validation?

– There is more to networks than connectivity

– When “nodes” and “links” have specific meaning …

– What do real networks look like?
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Cisco 12000 Series Routers

Chassis Rack size Slots
Switching 

Capacity

12416 Full 16 320 Gbps

12410 1/2 10 200 Gbps

12406 1/4 6 120 Gbps

12404 1/8 4 80 Gbps

• Modular in design, creating flexibility in configuration.

• Router capacity is constrained by the number and speed of line 

cards inserted in each slot.

Source: www.cisco.com
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Cisco 12000 Series Routers

Technology constrains the number and capacity of line cards that can be 

installed, creating a feasible region.
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Cisco 12000 Series Routers

Pricing info: State of Washington Master Contract, June 2002

(http://techmall.dis.wa.gov/master_contracts/intranet/routers_switches.asp)

$602,500

$381,500

$212,400

$128,500

$2,762,500

$1,667,500

$932,400

$560,500
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Education Network 

Initiatives in California 

(CENIC) acts as ISP for 

the state's colleges and 

universities

http://www.cenic.org

Like Abilene, its backbone 

is a sparsely-connected 

mesh, with relatively low 

connectivity and minimal 

redundancy.

• no high-degree hubs?

• no Achilles’ heel?
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Router Deployment: Abilene and CENIC
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AT&T Router Deployment (~2003, courtesy Matt Roughan)
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Model Validation: A “hands-on” Approach (cont.)

• Existing router technology

– Prevents the conclusion of power-law node degrees in 
the router-level Internet based on available traceroute 
measurements

– Allows for the potential of high-degree nodes, but 
relegates them to the edge of the network

• Examining existing and past real-world networks

– Real-world router-level topologies look nothing like PA-
type networks

– The results derived from PA-type models of the Internet 
are not “controversial” – they are simply wrong!

• Bottom line

– The Internet is exactly the opposite of what scale-free 
models claim in essentially every meaningful aspect

– Main reason: random vs. engineered (designed)
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Recap: What Network Science says about the Internet

• Power-law (scale-free) node degree distribution 

– (White) lie, damned lie

– Textbook example of “how to lie with statistics”

• Preferential attachment-type models

– Damned lie

• Highly popularized claims (e.g., Achilles’ heel, 

fragile/vulnerable to targeted node removal, zero 

epidemic threshold)

– Fabrications …

– Not “controversial” claims, but simply wrong claims!



145

Recap: What Network Science says about the Internet (cont.)

• Network Science approach to the Internet

– Textbook example of how not to do science

– Dismal analysis of lousy data = bad models

• What is better: Bad models or no models??

– On the one hand …

“Bad [models] are potentially important: they can be 

used to stir up public outrage or fear; they can 

distort our understanding of our world; and they can 

lead us to make poor policy choices.” (J. Best)

– … on the other hand …

Bad models motivate the development of better 

models ….
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The “Math” Perspective of “Network Science and the Internet”

• Starting assumption

– Node degree distributions follow a power-law

• Rigorous model definition/formulation

– Preferential attachment-type models

• Rigorous proofs

– Achilles’ heel

– Fragile/vulnerable to targeted node removal

– Zero epidemic threshold 

• End result is the same

– The results derived from PA-type models have been 

made rigorous

– The application of these results to the Internet are still 

“lies, damned lies, and statistics”.



147

What Went Wrong?

• No critical assessment of available data

• Ignore all networking-related “details”

– Randomness enters via generic attachment mechanism

– Overarching desire to reproduce power law node degree 

distributions

• Low model validation standards

– Reproducing observed node degree distribution
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How to avoid such Fallacies?

• Know your data!

• Know your statistics!

• Take model validation more serious!

• Apply an engineering perspective to engineered systems!
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An Engineering-Centric Perspective

• Must consider the explicit design of the Internet

– Protocol layers on top of a physical infrastructure

– Physical infrastructure constrained by technological and 

economic limitations

– Emphasis on network performance

– Critical role of feedback at all levels

• Need to seek models of Internet topology that are explanatory

and not merely descriptive.

• Want to consider the ability to match large scale statistics (e.g. 

power laws) as (at best) secondary evidence of having 

accounted for key factors affecting design
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Internet Modeling: An Engineering Perspective

• Surely, the way an ISP designs its physical infrastructure is not 
the result of a series of coin tosses …

– ISPs design their router-level topology for a purpose, namely 
to carry an expected traffic demand

– Randomness enters in terms of uncertainty  in traffic 
demands

– ISPs are constrained in what they can afford to build, operate, 
and maintain (economics).

– The “nodes” and “links” are physical things that have hard 
constraints (technology).

• Decisions of ISPs are driven by objectives (performance) and 
reflect tradeoffs between what is feasible and what is desirable 
(heuristic optimization)

– Constrained optimization as modeling language

• Power laws: Full of sound and fury, signifying nothing!
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Key Factors in Network Design

• Technology constraints 

– Router capacity

– Link capacity

• Economic constraints 

– User demands 

– Link costs

– Equipment costs

• Performance
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Economic Constraints

• Network operators have a limited budget to construct and 

maintain their networks

• Links are expensive

• Tremendous drive to operate network so that traffic shares the 

same links

– Enabling technology: multiplexing

– Resulting feature: traffic aggregation at edges

– Diversity of technologies at network edge (Ethernet, DSL, 

broadband cable, wireless) is evidence of the drive to provide 

connectivity and aggregation using many media types
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Heuristically Optimal Topologies (HOT)

• Economic considerations alone yield

– Mesh-like core of high-speed, low degree routers

– High degree, low-speed nodes at the edge

• Consistent with drivers of router-level network design

– Technology constraints

– Link cost (traffic aggregation)

– End user bandwidth demands

• Consistent with real observed networks

– Abilene and regional networks

– Tier-1 ISPs (actual and inferred)
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HOT Design Principles

Hosts

Edges

Cores
Mesh-like core of fast, 

low degree routers

High degree 

nodes are at 

the edges.
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Formalizing the HOT Design

Given realistic technology constraints on routers, how well is 

the network able to carry traffic?

Step 1: Constrain to 

be feasible
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HOT Network
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HOT

Highly 

Heavily

Heuristically

Optimized 

Organized

Tolerance 

Tradeoffs

• Based on ideas of Carlson and Doyle

• Complex structure (including power laws) of highly 

engineered technology (and biological) systems is viewed 

as the natural by-product of tradeoffs between system-

specific objectives and constraints

• Non-generic, highly engineered configurations are 

extremely unlikely to occur by chance
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Preferential

Attachment

PLRG

HOT
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Two Different Perspectives

• Random graph model perspective

– Randomness enters via coin tosses to determine the 

presence/absence of links between nodes

– Match aggregate statistics

– Suggests high-degree central hubs

• First principles perspective

– Randomess enters via uncertainty in the environment 

(i.e., end user traffic demands)

– Technology and economic constraints 

– Performance

– Suggest fast, low-degree core routers 

How to reconcile these two perspectives?
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PA PLRG

HOT Abilene-inspired Sub-optimal
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Step 1: Use Internet-Relevant Performance Metric

Given realistic technology constraints on routers and reasonable

traffic demands, how well is the network able to carry traffic?

Step 1: Constrain to 

be feasible
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PA PLRGHOT

Structure Determines Performance

P(g) = 1.19 x 1010 P(g) = 1.64 x 1010P(g) = 1.13 x 1012
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Step 2: Use Graph-Theoretic Metric

• Easily computed for any graph

• Depends on the structure of the graph, not the 

generation mechanism

• L(g) is large: connect high-degree nodes

j

connected
ji

iddgL
,

)(Define the metric (di = degree of node i)

Interpretations

• L(g) LogLikelihood (LLH) of g  (random graph models)

• L(g) measures the extent to which g has “hub-like” core

• L(g) measures the extent to which g is “scale-free”

• L(g) measures the extent to which g is “self-similar’
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Lmax

l(g) = 1

P(g) = 1.08 x 1010

P(g) 
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PA PLRGHOT Abilene-inspired Sub-optimal

0  0.2 0.4 0.6 0.8 1  

10
10

10
11

10
12

l(g) = Relative Likelihood



165

Lmax

l(g) = 1

P(g) = 1.08 x 1010

P(g) 

Perfomance (bps)
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???
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What about High Variability of Node Degrees?

• Same degree distribution can have different core 

structures

– PA, PLRG, HOT, …

• Same core structure can have different degree 

distributions

– Uniform low-end user bandwidth demands

– Uniform high -end user bandwidth demands

– Highly variable-end user bandwidth demands
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What about High Variability of Node Degrees?

• Same degree distribution can have different core 

structures

– PA, PLRG, HOT, …

• Same core structure can have different degree 

distributions

– Uniform low-end user bandwidth demands

– Uniform high -end user bandwidth demands

– Highly variable-end user bandwidth demands

• Root cause of high variability in node degrees

– End user bandwidth demands

• So much for power-laws!

– Full of sound and fury, signifying nothing!
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SF networks

• Core: Hub-like, high degree 

• Edge: Low degree

• Robust to random failures

• Fragile to “attack”

HOT networks, Internet

• Core: Mesh-like, low degree 

• Edge: High degree

• Robust to random failures

• Robust to “attack” 

• High performance

• Low link costs

• Unlikely, rare, designed

• Destroyed by rewiring

• Low performance

• High link costs

• Highly likely, generic

• Preserved by rewiring

+ objectives and constraints

Comparing HOT and SF
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HOT- vs. PA-type Network Models

Attack hubsHijack networkFragility

FragileRobustAttack Tolerance

Low throughputHigh throughputPerformance

RandomDesignedGeneration

Power lawHighly VariableDegree distribution

CoreEdgeHigh degree nodes

Slow, high degreeFast, low degreeCore nodes

PA-type modelsHOT-type/ InternetFeatures
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HOT-type Network Models

• Important lessons learned

– Know your data! – they typically reflect what we can 

measure rather than what we would like to measure

– Avoid the allure of PA-type network models! – there exist 

more relevant, interesting, and rewarding network models 

that await discovery

– Details do matter! – beware of layers, protocols, feedback, … 

• Key features of HOT models

– Consistent with existing ISP router-level topologies

– Consistent with existing technologies

– Consistent with engineering principles

– Consistent with (complementary) measurements

– Node degree distribution is a non-issue
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HOT-type Network Models (cont.)

• Recent alternatives to PA-type models

– Motivated by the failure of the PA-type models

– Extremely unlikely to occur at random

• New paradigm for network modeling

– Network modeling ≠ exercise in data fitting

– Network modeling = exercise in reverse-engineering

– Constrained optimization as modeling language

• Constrained optimization as mathematical modeling language

– Optimization of tradeoffs between multiple functional 

objectives of networks

– Subject to constraints on their components

– With an explicit source of uncertainty (in the environment) 

against which solutions must be tolerant or robust
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Litmus Test for Newly Proposed Network Models

• Make node degree distribution a non-issue

– Good reasons

•High-quality data but low variability (e.g., exponential)

•Low-quality data

•High-quality data and high variability (e.g., power-laws)

– PA-type models

• DOA  -- dead on arrival

– Only reasonable alternative

•Bring in and rely on domain knowledge

• What new kinds of measurements does the proposed model 

suggest for the purpose of model validation

– PA-type models: none

– HOT models: get data on existing router technology
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Implications of this Engineering Perspective

• Dynamics of graphs

– Evolution of connectivity structures

– Evolution of (internal) node/link structure

• Dynamics over graphs

– Traffic dynamics/matrix (bytes, packets, flows, …)

• Challenging feedback problem

– Traffic dynamics/routing impacts network structure 

– Network structure impacts traffic dynamics/routing

• Robustness/fragility considerations only make sense in 

the context of the broader system, i.e., protocol stack

– Router-level: Inter-AS routing protocol

– AS-level: Intra-AS routing protocol
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New Mathematical Challenges

• Dynamics of and over networks

• Robustness/fragility of networks

• Multiscale network representations

• Networks of networks
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Dynamics of/over Networks

• PA-type modeling perspective

– Networks grow by addition of new nodes/links 

according to specific rules

– Limit networks as models of large-scale real-world 

graphs

– Dynamics of networks without dynamics over 

networks

• Current mathematical efforts

– Limits of graphs (Chayes et al. 2005)

– Convergent graph sequences (Chayes et al. 2007)
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Heuristically Optimized Topologies (HOT)

Given realistic technology constraints on routers, how well is 

the network able to carry traffic?

Step 1: Constrain to 

be feasible
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Dynamics of/over Networks (cont.)

• HOT modeling perspective

– Networks evolve in response to changing conditions

– Traffic demands, technology, economics, government 
regulations, …

– Evolution of node-internal structure

• Important observation

– Coupling of network traffic and network structure

– Network traffic/routing impacts network structure

– Network structure impacts traffic flow/routing
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Dynamics of/over Networks (cont.)

• HOT view leads to natural separation of timescales

– Fast (traffic demands): traffic engineering (e.g., re-
computing link weights)

– Medium (traffic trends): network provisioning (e.g., 
adding links)

– Slow (technological changes): network design (e.g., re-
optimize)

• New mathematical approaches

– Network utility maximization (NUM) (M. Chiang, S. Low, 
J. Doyle)
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Network Robustness/Fragility

• On the one hand, the Internet is extremely robust to the loss of 
links/nodes

– By design: #1 requirement of the original architectural 
design of the Internet

– Via specific protocol (IP) that “sees failures and routes 
around them”

• On the other hand, the Internet is highly fragile to 
hijacking/attacking the very infrastructure that provides the 
existing robustness to the higher layers

– Has little to do with connectivity, but is all about protocols

– By design: Designers of the original Internet assumed “trust 
anybody”

– This trust model is completely broken (spam, worms, 
viruses, denial-of-service attacks, botnets, etc.)
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Network Robustness/Fragility (cont.)

• Network robustness is more than knocking out 

nodes/links …

• A relevant mathematical treatment of the Internet’s 

robustness/fragility properties only makes sense in the 

context of the entire TCP/IP protocol stack …

• …, but the incorporation of the associated relevant  

mechanisms poses significant challenges for any (semi-) 

rigorous mathematical study of the robustness/fragility 

of today’s Internet.  



185

Network Robustness/Fragility (cont.)

• Key characteristics of large-scale, highly engineered systems

– Highly structured, elaborate internal configurations

– Layers of feedback and signaling

– Robust to uncertainties in their environment/components

– Vulnerable to rare or unanticipated perturbations

• The “robust yet fragile” nature of the Internet

– Inevitable result of fundamental tradeoffs

– Spiral of increasing complexity

•To suppress unwanted/newly found vulnerabilities

•Take advantage for increased performance

•Added complexity leads to new vulnerabilities

• In desperate need for a theory that can provide guidance

– Initial attempts: J. Doyle, P. Parrilo
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Multiscale Network Representations

• Some natural hierarchical representations

– Router-level (i.e., physical infrastructure)

– PoP-level (Point-of-Presence, router clusters)

– ISP-level (i.e., Internet Service Providers)

– AS-level (i.e., Autonomous Systems)

• Associated traffic demands (traffic matrix)

– Recent success: Router-, PoP-level

– Unknown: ISP-, AS-level

• Any multi-scale treatment of the Internet must respect 

these naturally occurring hierarchical structures in today’s 

Internet.

• New mathematical approaches

– Diffusion wavelets (M. Maggioni, R. Coifman, P. Jones)
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Networks of Networks

• Most of the infrastructure systems we rely on in our daily lives 

are designed and built as networks

– Today’s Internet (some 30,000 Autonomous Systems)

• Other examples of critical infrastructures

– Electrical Power grid

– PTN, TV/Radio, CATV, Wireless

– Banking, finance, airline transportation, government

• New Vulnerabilities

– Interconnected, interdependent

– Internet: “central nervous system”

– Catastrophic, cascading failure events; deliberate attacks

• The general allure

– “Typical” behavior is often simple, suggesting naïve models

– “Atypical” events reveal the role of enormous internal 
complexity
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Further Implications of this Engineering Perspective

• The importance of “structure” vs. “function”
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Further Implications of this Engineering Perspective

• The importance of “structure” vs. “function”

• Key question #1: What is the network as whole trying to 

achieve?

– Internet router-level: see earlier

– Internet AS-level: ?

– WWW, P2P: ??

– Social Networks: ???

• Key question #2: How is the network trying to achieve 

its objective?

– Centralized

– Decentralized, distributed (duality gap?)
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On Modeling the Internet AS-level connectivity

• Applying our litmus test for network models

• Traditional AS connectivity modeling

• Criticism of traditional AS connectivity modeling

• An alternative approach based on engineering 

considerations
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Conventional Approaches to AS-level Topology Modeling

• Step 1: Take the available measurements at face value

• Step 2: Analyze the data as if they could provide the 
ground truth about the Internet’s actual AS-level 
connectivity structure

• Step 3: Propose a random graph model or construction 
that describes/fits the inferred AS maps well

• Step 4: Argue for the validity of the proposed model on 
the basis that it is capable of reproducing certain 
empirically observed properties of the inferred AS maps
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Criticism of Conventional Modeling Approach

• Measurements

– Connectivity-related Internet measurements are of 
limited quality

– BGP is not a mechanism by which ASes distribute 
connectivity information, but is a protocol by which 
ASes distribute the reachability of their networks via 
a set of routing paths that have been chosen by 
other ASes in accordance with their policies.

• Modeling

– Inferred AS maps are in general dubious or useless, 
unless they are accompanied by strong robustness 
results that state whether or not the observed 
properties are insensitive to the known ambiguities 
inherent in the underlying measurements.

– Chang et al. (2004)
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An Engineering Approach to AS-level Topology Modeling

• Engineering perspective

– Surely, deciding on whether or not to establish what 

type of peering relationship and with whom is not the 

outcome of a series of chance experiments 

conducted by the different ASes, but is largely based 

on economic arguments.

• Need to understand the critical roles played by

– AS-specific traffic

– AS-specific geography

– AS-specific business model

• Recent alternatives to PA-type models

– Chang et al. (2006)
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An Engineering Approach to AS-level Topology Modeling (cont.)

• Main challenges

– What does the AS-level Internet as whole trying to 
achieve?

– How does the AS-level Internet achieve its objective?

• Engineering approach

– Optimization of tradeoffs between multiple functional 
objectives of networks

– Subject to constraints on their components

– With an explicit source of uncertainty against which 
solutions must be tolerant or robust

– Node degree distribution is a non-issue

• What are the objectives, constraints, and main sources 
of uncertainty?
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The Engineering Approach beyond Router- and AS-Connectivity

• Overlays

– What does Gnutella/BitTorrent as a system trying to 

achieve? And how?

– What is the Web as a whole trying to achieve? And 

how?

– …

• What are the objectives, constraints, and main sources 

of uncertainty?

– Technology, economics, socio-technological aspects, 

socio-economic factors, social science, user 

behavior, …

– How to decide in a principled manner?
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Functionality trumps Structure …
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Main Problems with the “Network Science” Approach

 No critical assessment of available data

 Ignores all networking-related “details”

 Overarching desire to reproduce observed properties of the 

data even though the quality of the data is insufficient to say 

anything about those properties with sufficient confidence 

 Reduces model validation to the ability to reproduce an 

observed statistics of the data (e.g., node degree distribution)



199

How to fix “Network Science”?

 Know your data!

 Importance of data hygiene

• Know your statistics!

– Every dataset can be “mined” to yield power-laws

 Take model validation more serious!

Model validation ≠ data fitting

 Apply an engineering perspective to engineered systems!

Design principles vs. random coin tosses
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The Main Take-Away Messages

The application of “Network Science” in its current form to 

the Internet has led to conclusions that are not controversial 

but simply wrong.

The application of “Network Science” to the Internet has 

become a textbook example for demonstrating what can and 

does go wrong if domain knowledge is ignored for the sake of 

hype and publicity.

There exists now an alternative approach to “Network 

Science” that provides a much-needed engineering 

perspective to balance the dominant statistical physics 

perspective in today’s “Network Science”.
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And Don’t Forget …

• Past: Modeling in the presence of high-quality data that can be 
taken at face value

– “All models are wrong … but some are useful” (G.E.P. Box)

• Future: Modeling in the presence of highly ambiguous data 
that should not be taken at face value

– “When exactitude is elusive, it is better to be approximately 
right than certifiably wrong.” (B.B. Mandelbrot)

– In the case of the Internet, the scale-free network models 
are a textbook example of being “certifiably wrong”, while 
the HOT models are an example of being “approximately 
right.”


